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ABSTRACT

A methodology for control augmented structural synthesis is
proposed for a class of structures which can be modeled as an assem-
blage of frame and/or truss elements. It is assumed that both the plant
(structure) and the active control system dynamics can be adequately
represented with a linear model. The structural sizing variables, active
control system feedback gains and non-structural lumped masses are
treated simultaneously as independent design variables. Design con-
straints are imposed on static and dynamic displacements, static
stresses, actuator forces and natural frequencies to ensure acceptable
system behavior. Multiple static and dynamic loading conditions are
considered. Side constraints imposed on the design variables protect
against the generation of unrealizable designs. While the proposed
approach is fundamentally more general, here the methodology is
developed and demonstrated for the case where: (1) the dynamic load-
ing is harmonic and thus the steady state response is of primary
interest; (2) direct output feedback is used for the control system

model; and (3) the actuators and sensors are collocated.

The synthesis methodology is implemented in a research com-
puter program and is used to solve several example problems. These
problems were chosen so that in addition to demonstrating the basic
features of the design methodology, the results could be critically
evaluated through insights into the physical behavior of the system.

xviii



CHAPTER I

Introduction

1.1 Introduction

The design of efficient structural systems is of fundamental
interest to both structural and control system engineers. Systematic
methodologies for both structural and active control system synthesis
(e.g. structural optimization and linear optimal control theory) are well
known and are receiving increased application in the design environ-
ment. However, these design techniques, for the most part, have been
applied independently within the overall design process. Specifically,
a conventional design methodology has evolved in which the structure
is designed subject to prescribed strength and stiffness requirements
(while ignoring the existence of the active control system) with the
active control system being subsequently designed under the assump-
tion that the structure is prescribed. The success of this approach has
been largely due to the fact that the active control systems have been
used primarily to control gross structural motions (e.g. attitude control
of orbiting space structures) while local structural vibrations were

suppressed via the structural design.

Recently, increased interest in the design of highly flexible orbit-
ing space structures, as well as light weight fuel efficient aerospace
and ground transportation vehicles, has motivated a reconsideration of

the conventional structure/control system design approach. There is



now a growing awareness that the design of the next generation of
structural systems will require that the structural and control system
design functions be integrated in some manner. Therefore, the primary
objective of this work is to set forth and demonstrate a control aug-
mented structural synthesis methodology for the simultaneous design

of a structure and its associated active control system.

1.2 Background

Since the early 1970’s there has been considerable interest in the
design of efficient control augmented structural systems (Refs. 1-3).
This interest has been particularly intense within the aerospace com-
munity as a result of challenging problems associated with the design
of large flexible orbiting space structures (Ref. 4). It is now generally
recognized that the inherently low stiffness and damping characteristics
of this new generation of structures will require the use of active con-
trol systems, not only for maneuvering and attitude control, but also
for vibration suppression and shape control. Consequently, the appli-
cation of active control technology to the problem of vibration control
in flexible structures has recently received much attention in the litera-

ture (Ref. 5).

Various methods for the design of active control systems for
flexible structures are discussed in Refs. 6-14. The three most com-
mon approaches have come to be known as direct output feedback
(DOFB), modern modal control (MMC) and independent modal space
control (IMSC). Direct output feedback (Refs. 15-18) is, conceptually,
the simplest of the feedback control techniques. This method utilizes



control inputs which are explicit linear functions of the system
response. The actuator commands are obtained by electronically multi-
plying the sensor outputs by the feedback gains. These gains are usu-
ally determined via a class of techniques known as pole placement or
pole allocation in which the output feedback gains are chosen so that a
selected set of the closed loop eigenvalues (poles) of the system take
on prescribed values (Ref. 19); although the use of linear optimal con-
trol techniques is possible (Ref. 20). Also, two constrained optimiza-
tion techniques have recently been suggested in Refs. 21 and 22 where
the damping characteristics of the system are enhanced while minimiz-

ing the feedback gains.

As an alternative to calculating the control forces directly from
the system outputs, the modern modal control methods are based on
the concept of state variable feedback. In this approach the actuator
commands are determined via multiplication of the system states and
the state feedback gains. While this approach is conceptually similar
to DOFB, additional complexity arises from the fact that, in general,
the states are not directly measurable. Therefore, MMC requires that
the state variables be reconstructed from the sensor output measure-
ments through the construction of an auxiliary dynamical system
known as an observer (Ref. 19). Fortunately, the controller and
observer design problems are separable. Therefore, the state feedback
gains can be determined independently, under the assumption that the
states are observable. As was the case with the DOFB approach, the
state feedback gains can be determined via both pole placement and

linear optimal control techniques. However, the application of linear



optimal control techniques is most prevalent in the literature (e.g. Refs.
23-26).

The last of the three common active control design techniques is
known as independent modal space control (Refs. 27-29). This
method utilizes both internal and external decoupling mechanisms such
that the control is applied to each mode of the structure independently.
The decoupling process consists of, first, decoupling the uncontrolled
system equations of motion via the normal mode method (Ref. 30) and
then introducing the controls directly into the modal equations of
motion. These modal control forces are assumed to be functions only
of the coordinates associated with a single modal equation and are
given by the product of the modal coordinates and the modal feedback
gains. As before, the feedback gains can be calculated by both pole
placement and linear optimal control techniques. Moreovér, since the
modal controls are independent of each other the computation of the
gains for each mode can be performed independently, thereby
significantly reducing the computation effort associated with the design
process. However, since the controls are designed in the modal space,
the IMSC method requires a final additional step for implementation.
In this step the real actuator forces must be determined from the modal
control forces. This is accomplished, in effect, through the construc-
tion of a modal observer which reconstructs the modal coordinates
from the sensor output measurements. A relatively simple observer
can be constructed if the numbers of actuators and sensors is equal to
the number of modes to be controlled (Ref. 31). Unfortunately, this

requirement can represent a rather serious burden in terms of hardware



costs for large systems. Recently, however, an alternative modal
observer formulation (based on a pseudo-inverse) which requires fewer

actuators and sensors was proposed (Ref. 32).

The active control system design techniques described above all
operate under the assumption that the structure (plant) has been previ-
ously designed and, therefore, its stiffness, mass and damping charac-
teristics are known. The actual design of the structure is traditionally
the responsibility of the structural engineer. The development of sys-
tematic methodologies for structural synthesis has received much atten-
tion over the past 25 years and techniques applicable to a significant
class of structural design problems are well developed. A history of
its development and the current state-of-the-art of structural synthesis

are given in Refs. 33-38.

Primarily, three approaches to systematic structural design have
been explored. Two of these approaches, one based on mathematical
programming methods (Ref. 39) and the other on optimality criteria
(e.g. Refs. 40-41) have received the most attention. The optimality
criteria methods are based on a statement of the necessary conditions
that must be satisfied at the optimum design. This optimality criterion
is formulated via a priori assumptions as to the number and types of
failure modes characterizing the optimum design (e.g. fully stressed
design). These methods are generally computationally efficient and
yield good results, if the failure modes have been correctly identified,
but suffer somewhat in that they are not easily applied to a general

class of structural design problems.



In the mathematical programming based techniques, the struc-
tural design problem is formulated as a nonlinear programming prob-
lem (NLP) in terms of a design objective and performance require-
ments (behavior constraints). The NLP is then solved for the optimal
values of the design variables. This approach is quite general and can
easily accommodate different design objectives and the simultaneous
consideration of a variety of possible failure modes. Its generality of
application and its recent interpretation as a generalized optimality cri-
teria method (Refs. 42-43) have established this approach as the

predominate structural synthesis tool.

Another structural design technique has received some limited
attention. This approach, based on optimal control theory, has, for the
most part, been applied to the design of distributed parameter systems
(e.g. Ref. 44, Chapter 6). It has been demonstrated, pfimarily, on
small component level design problems. The application of optimal
control techniques to the design of large structures modelled as lumped

parameter systems has seen only limited investigation (e.g. Ref. 45).

In the past, the structural (passive) and active control system
design techniques described herein have been applied independently
within the overall design process. Recent concerns over the design of
large flexible space structures have generated interest in interdisci-
plinary approaches to the design problem (Refs. 46-47). This interest
has been heightened as a result of both numerical and experimental
demonstrations of the synergic nature of active and passive control

techniques (Refs. 48-50). Consequently, in the past few years several



simultaneous design methodologies have been proposed.

One class of methods utilizes linear optimal control theory to
unify the structure/control design process. In this approach, the
optimal controls are expressed as a function of the structural design
variables and a design problem is then formulated in terms of the
structural variables alone. In Ref. 51, this design problem consists of
the minimization of a quadratic performance index subject to a con-
stant structural mass constraint. Reference 52 constructs a composite
objective function (structural mass plus quadratic performance index)
which is minimized subject to constraints on the open loop eigenvalues
via an optimality criterion method. In both cases the optimality condi-
tions for linear optimal control are used to reduce the dimensionality

of the design space.

An alternative approach, which treats both the structural and
control variables as design quantities, is given in Ref. 53. In this case
the structural and active control system design problems are performed
sequentially within an iteration loop and are coupled through the con-
straints of the structural synthesis problem. The control system is
designed first with the structural variables held constant. Then the
structural mass is minimized subject to inequality constraints on the
closed loop eigenvalues, with the control variables held constant. The

process is repeated until convergence is attained.

Neither of the approaches discussed above actually integrates the
structural and active control system design problems into a single syn-

thesis problem statement in terms of an independent set of structural



and control design variables. Several other recent works, however,
have begun to address this task. In Ref. 54, the integrated design
problem is posed as the minimization of a composite objective func-
tion (structural mass plus quadratic performance index). The minimi-
zation process is carried out via numerical solution of the necessary
conditions for the existence of an extremal control-structural parameter
pair. In Ref. 55, a minimum modification strategy is developed which
uses either direct output feedback control or steady state regulator con-
trol in conjunction with two distinct objective functions, namely,
eigenvalue placement and minimum control gain Euclidian norm. The
design variables considered include structural parameters, actuator
locations, sensor locations and control gains. In Ref. 56 an eigenspace
optimization approach is presented which also includes structural
parameters, sensor/actuator locations, and control feedback gains in the
design variable set. Two basic ideas underlie the approach taken in
Ref. 56: (1) regions of the design space where the eigenvalue solution
exhibits "extremely high sensitivity are generally undesirable," and (2)
"rather than attempting to prescribe an exact point location for every
eigenvalue, it is more reasonable to move all of the eigenvalues into an
acceptable region of the complex plane." In Ref. 57, a truss structure,
modeled as an equivalent continuum, is designed together with its
active control system. The design problem is posed as the minimiza-
tion of a composite objective function (structural mass plus steady
state response) subject to inequality constraints on the closed loop
eigenvalues and the structural design parameters. The analysis is for-

mulated in the frequency domain and the optimization is carried out



using a nonlinear least squares algorithm.
1.3 Scope of the Work

Previous approaches to integration of the structural and active
control system design functions into a unified synthesis methodology
(with independent structural and control design variables) are deficient
in several aspects. Probably the most serious difficulty with these
methods is their failure to impose design constraints directly on the
structural response quantities (e.g. dynamic displacements) and the
actuator forces. Instead, the design of a system having acceptable
response characteristics and control effort requirements is attempted
through: 1) the imposition of constraints on the closed loop eigen-
values and/or 2) the selection of appropriate weighting matrices to be
used in the formulation of a quadratic performance index. In either
case, considerable experience and insight are required to select the
parameters which will yield an acceptable design. This is especially
true in the selection of the weighting matrices, where it is not uncom-
mon to iterate several times in order to achieve the desired system

response (e.g. Ref. 58).

Another shortcoming of many existing structure-control syn-
thesis methodologies is that they are not easily extended to include of
constraints associated with static loading conditions (e.g. static dis-
placement and stress constraints). While it is true that many structural
design problems may be dominated by constraints associated with
dynamic loading alone, it is nevertheless important, for a significant

class of structures, to address the possibility that both static and



dynamic failure modes as well as multiple load conditions will drive

the design.

Other important considerations in the simultaneous design of
structure-control systems, which have not been treated and will not
specifically be addressed in this work, include: 1) plant modeling
errors, 2) output sensing errors and 3) time delays in the control sys-

tem dynamics.

In this work, a general methodology for control augmented
structural synthesis is proposed for a class of structures which can be
modeled as an assemblage of frame and/or truss elements. Structural
sizing variables, active control feedback gains and lumped non-
structural masses are treated simultaneously as independent design
variables. Lower bound side constraints on the feedback gains are
used to indirectly guard against dynamic instability (Ref. 18). Design
constraints are imposed on dynamic displacements, actuator forces,
undamped natural frequencies, static displacements, and static stresses.
Multiple static and dynamic load conditions can be taken into account.
Furthermore, the option to expand the design space by allowing
independent feedback gain design variables, for each of several
dynamic load conditions, is included. It is assumed that both the plant
(structure) and the active control system dynamics can be adequately
approximated with a linear model. While the proposed approach is
fundamentally more general, here the methodology is developed and
demonstrated for the case where: (1) the dynamic loadings are har-

monic and therefore the steady state responses are of primary interest;
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(2) direct output feedback is used for the control system model; and

(3) the actuators and sensors are collocated.
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CHAPTER 11
The Control Augmented Structural Synthesis Problem

2.1 Introduction

During the past decade optimization via general nonlinear
mathematical programming methods has become widely accepted as a
viable methodology for structural design. Here, mathematical pro-
gramming methods have been coupled with finite element based struc-
tural analysis techniques, through the application of approximation
concepts (Refs. 59-61), to yield a powerful design tool. Due to its
generality, this approach is well suited for application to the design of
control augmented structures. In this chapter the control augmented
structural synthesis problem is formulated as a general nonlinear ine-
quality constrained mathematical programming problem having a com-
posite objective function. This problem is then replaced by three alter-
native nonlinear programming problems, each of which has a single

distinct design objective.
2.2 Problem Formulation

An important class of control augmented structural synthesis
problems may be stated as follows: seek a design Y" which minimizes
some measure of the system’s performance subject to the condition
that all appropriate measures of the system’s behavior and all design
variables remain within prescribed bounds. Mathematically, this state-

ment can be written in the form of a nonlinear mathematical

12



programming problem as

min ¢; M(Y) + ¢, J(Y)
b

s.t. G(

S
IA
ol

2-1)
e

~
A
~I
A

where the objective function is a weighted sum of the mass M and a
performance index J, Y is a vector of design variables, G is a vector of
behavior constraints (e.g. static and dynamic displacements, frequen-
cies, static stresses, actuator forces), and YV and Y* are upper and
lower bounds on the design variables. In this work it is assumed that
the structural topology, configuration, materials and loading conditions
are prescribed and that the number and locations of the control system
actuators and sensors are also specified. The design variables include
the structural sizing variables, the control system feedback gains and
lumped non-structural masses. For frame-truss structures the element
sizing variables are, typically, cross sectional dimensions (CSD’s)
and/or the element reciprocal section properties (Ref. 61). Here the ele-

ment CSD’s have been chosen as the sizing variables.

Either of two options may be selected with respect to control
system feedback gain design variables when multiple dynamic load
conditions are involved: (1) the number of feedback gain design vari-
ables is equal to 2 per actuator (position gain and rate gain); (2) the
number of feedback gain design variables is equal to 2 x K, per actua-
tor, where K, equals the number of distinct dynamic load conditions.

It should be understood that the foregoing options describe the number

13



of independent feedback gains prior to any linking of the control sys-

tem design variables.

The synthesis problem statement represented by Eq. (2-1) is not
completely defined until the weighting factors (c; and ¢;) in the objec-
tive function are selected. While there is no conceptual difficulty with
solving the problem, given specific values for the weighting
coefficients, the a priori selection of appropriate values for ¢; and c,
can be quite difficult. In fact, it is often necessary to solve such a
problem several times with different values of the weighting
coefficients before the desired design objective is obtained. An alter-
native approach to the problem is to consider the following two special
cases: 1) the case where ¢; =1 and ¢, =0, and 2) the case where

cl=0andcz=l.

In the first case, the design problem objective function is simply
the mass. A constraint can be added to the problem statement to limit
the maximum allowable value of J, since it is not now represented in

the objective function. The resulting problem statement is as follows:

min M(Y)

)7) <JU (2-2)

where JU is the upper bound on the performance index.
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In the second case, the objective function includes only the per-
formance index. Placing an upper bound constraint on the mass yields

the following problem statement:
min J(Y)

M@Y) < MY (2-3)
Yr<y

where MU is the upper bound on the mass.

To complete the control augmented structural synthesis problem
statements given by Egs. (2-2) and (2-3) the form of the performance
index must be considered. Typically, in the design of active control
systems, a quadratic measure of the system response and control effort
is used. In this work, since the loading under consideration is har-
monic and the response of interest is steady state, the following linear

form can be used:

JX) = Jg(D) +J(V) = T 3 Qulup(D)| + 3 T RylF 4D
K j ki (2-4)

where Jp and J are the portions of the performance index associated
with the system response and control effort, respectively. In Eq. 2.4
Iujk(Y)l represents the magnitude of the j-th displacement degree of
freedom in the k-th dynamic load condition, |F Au(?)l represents the
magnitude of the i-th actuator force in the k-th dynamic load condition,

and the Qj, R; denote the corresponding weighting factors.

The direct substitution of Eq. (2-4) into Egs. (2-2) and (2-3) will

yield a complete statement of the control augmented synthesis prob-
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lem. However, the form of the performance index (Eq. (2-4)) leads to
computational difficulties similar to those discussed relative to the use
of a composite objective function formulation (i.e. structural mass
plus performance index). Specifically, the design problem solution is
dependent on the relative values assigned to the two sets of weighting

factors O, and Ry.

For the problem represented by Eq. (2-2) this difficulty can be
alleviated by replacing the single performance index constraint with

two constraints, giving

min M(Y)
i3

S.L. G—(Y_) <0
Je(¥) < J§
Je() < J¢ (2-5)
Fr<ys?V

where J¥Y and JY are upper bounds on a measure of system response
and control effort, respectively. It should be noted that for many prac-
tical design problems the existence of nodal displacement constraints
in the set of behavior constraints (G(Y)) will adequately constrain the
system response and, in those cases, the constraint on Jp can be

removed from the problem statement.

For the design problem given by Eq. (2-3) the substitution of
Eq. (2-4) leads to a composite form of the objective function. Again,
it is useful to consider two special cases. First, letting the R;, = 0 Egs.
(2-3) and (2-4) combine to yield
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<J% (2-6)

where the upper bound constraint on J, is added to compensate for the
removal of the control effort measure from the objective function.

Similarly, letting the Q; = 0 gives

7
Jr) < J¥ 2-7)
<

where the upper bound constraint on Jg is added to compensate for the
removal of the response measure from the objective function (although

it may be ignored for certain problems as described previously).

The three control augmented structural synthesis problems stated
in Egs. (2-5), (2-6) and (2-7) are applicable to the design of a
significant class of structures and their associated active control sys-
tems. These problem formulations can be applied to achieve any one
of the following three design objectives: 1) minimization of mass (Eq.
(2-5)), 2) minimization of the structural response associated with
selected degrees of freedom (Eq. (2-6)) and 3) minimization of total

control effort (Eq. (2-7)). The solution to these problems can be
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attempted via the direct application of various nonlinear programming
algorithms. However, since both the objective functions and the con-
straints are, in general, complicated, implicit, nonlinear functions of the
design variables this direct approach is computationally impractical
even for small systems. A more tractable approach to the solution is
to replace these implicit nonlinear problems with explicit approximate
problems of reduced dimensionality. These problem statements are as
follows:

min M(Y)
Y

st. 3N <0; qeQp
kD < J¥
Je(D) < J¥ (2-8)
P<?P<y?

min Jp(Y)

Y

st. §Y)<0; qeQp
M) < MU
Jh) < J¢ 2-9)

and

min Jo(D)
¥

M) < MY
D <J¢ (2-10)

where M, Jy, and J are explicit approximations of the mass, response
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measure and control effort measure, g, are explicit approximations of a
subset Qp of the original behavior constraints and Y is now the vector
of linked design variables. The vectors ¥V and 1:”“ are the stepwise
upper and lower bounds on the design variables and they are chosen to

protect the quality of the approximations.

The solution to the original problems (Egs. (2-5) - (2-7)) is
obtained via the iterative construction and solution of a sequence of
approximate problems having the form of Egs. (2-8) - (2-10). The
generation and solution of each approximate problem consists of the
following three phases: 1) analysis, 2) approximate problem generation
and 3) optimization. These three solution phases are applied iteratively
(see Fig. 1) until convergence is attained. Each of these phases is

described in detail in the following chapters.
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CHAPTER 1II
Structural Analysis

3.1 Introduction

The structural analysis is an essential phase in the solution of
the control augmented structural synthesis problem. The solution of
the analysis problem yields the primary response quantities (e.g. fre-
quencies, nodal displacements and element forces) required for the
evaluation of the design constraints. While there are several tech-
niques available for solving this problem, the method chosen here is
the well known finite element displacement method (e.g. Ref. 62).
This method is particularly attractive within the context the control
augmented structural synthesis because 1) a variety of structures and
loading conditions can be treated in a unified manner, 2) the method is
relatively efficient and easy to implement, 3) the method is well suited
for subsequent response quantity sensitivity calculations and 4) the
method lends itself to the integration of the structural and control sys-

tem models.

While the finite element method is applicable to a more general
class of problems, those considered here are control augmented frame-
truss structures subject to multiple static and harmonic dynamic load-
ing conditions (including discrete nodal loads and loads uniformly dis-
tributed along the element) with homogeneous displacement boundary

conditions. The underlying analysis equations are described in detail
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in the following sections.
3.2 Static Analysis

The equations governing the response of a linear structural sys-

tem subject to multiple static loading conditions are of the form

(KNub = {P}e; k=12.K, o)
where (K] is the structural stiffness matrix, {u#}, and {P}, are the vec-
tors of unknown displacements and known applied nodal loads
(corresponding to the k-th loading condition), and K, is the total
number of static loading conditions. Egs. (3-1) represent a set of
linear simultaneous equations which can be generated from the element
level stiffness matrices (K]{ and load vectors {P}, using an assembly
technique known as the direct stiffness method (Ref. 62). The
stiffness matrices and work equivalent load vectors (for uniformly dis-
tributed loading) for the space frame and truss elements are given in

Appendix A.

Prior to the actual assembly of the system stiffness matrix and
load vectors the element level quantities [K]¢ and {P}% must be
expressed in terms of a common system level or global coordinate sys-
tem. This is accomplished by using the following transformation

equations

[K1¢ = [TY][KIZIT),

{PY, = (TIT{PY 52

where [K]¢ and {P}§ are the element level stiffness matrix and load
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vector, in global coordinates, for the i-th structural element. The

orthogonal transformation matrix [T]; has the general form

[T];

[1] = [RoI[Rel[Rp]

and

[Ro] =

[Re] =

[RB] =

p- -

(4]
(4]
[#]

(4]

where (dropping the subscript i for convenience)

1 0 0
0 coso sino

0 —-sino. cosx

cos@ sin® 1

—sin® cos6 O

0 0 0]
cosBp 0 sinf -

0 1 0
-sinB 0 cosf |

3-3)

(3-4)

(3-5)

The angles o, 6 and P, between the local and global coordinate sys-

tems, are shown in Fig. 2. It should be noted that the matrix [t] for

the space truss element reduces to the form
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= [Rp][R
(7] = [Rell [3] (3-6)

by virtue of the fact that o may be arbitrarily set to zero making [R,]

an identity matrix.

Once Egs. (3-1) have been assembled the homogeneous dis-
placement boundary conditions may be applied. Conceptually this is
done by eliminating those equations associated with the boundary
degrees of freedom (in actual implementation these equations are never
assembled). With the appropriate boundary conditions imposed Eqgs.
(3-1) represent a positive definite system of equations which can be
solved for the unknown displacement vectors {u},. The solution
method used here is based on a modified Cholesky decomposition

technique which replaces [K] by a factorization of the form

(K] = [L1DIIL)" 3-7)
where [L] is a lower triangular matrix and [D] is a nonsingular diago-
nal matrix. Once [K] has been decomposed the solution vectors {u},
are obtained through the usual series of forward and backward substi-
tutions. It is important to recognize that significant computational and
computer storage savings can be realized by taking advantage of the
banded structure of Egs. (3-1). Therefore, in this study, the solution
method described above is implemented for a compact "skyline"

storage arrangement of [K] as described in Ref. 63.

Having calculated the nodal displacement vector {u};;

k= 1,2,..K, the end forces for the i-th structural element are given by
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{FYj = K]} {u} + {FEF}} (3-8)

where {F}§, {u}§ and {FEF}; are the forces, displacements and fixed
end forces (corresponding to the uniformly distributed loading) associ-
ated with the i-th element for the k-th loading condition, written in the
local coordinate system. The local displacements {u}; are calculated

from the global displacement vector {u}; via the transformation

{uli = [T{ulu (3-9)

where it is understood that {u}; is the subset of the global displace-
ment vector {u}, associated with the i-th element. The fixed end

forces {FEF};, for the uniformly distributed loading are given by

FEFY, = - {P}§
{FEFY5 = - {PY, 5-10)

where {P}{ is the work equivalent loading vector as defined in Egs.

(A-13) and (A-23) for the frame and truss elements, respectively.
3.3 Dynamic Response Analysis

The discretized equations of motion for a linear structural system
subject to multiple dynamic loading conditions are given by the fol-

lowing second order differential equation:

M{u}, + [CHu}y + [KH{u} = {P)}s k= 1,2.K, (3-11)

where [M] is the system mass matrix, [C] is the viscous damping
matrix, (K] is the structural stiffness matrix, and {u},, {u}, and {u},
are the nodal accelerations, velocities and displacements corresponding
to the k-th dynamic loading vector {P(f)},. Note that the system mass
matrix [M] consists of two parts, that is
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=M M
[M] = [Mg] + [M,] 512

where [M;] denotes the structural mass matrix and [M,] represents the
mass matrix associated with nonstructural lumped masses. Equation
(3-11) can be generated via the assembly of the element level matrices
[M;)¢, [C;]® and [K;]%, along with the load vectors {P;}%, in the same
way that Eqs. (3-1) are formed. The stiffness and consistent mass
matrices for the space frame and truss elements are given in Appendix
A. The element level damping matrix ([C;]¢) for a viscous damper can
be generated from the truss element stiffness matrix by replacing

(EA/L); by the viscous damping coefficient c;.

Equation (3-11) can be augmented to include the effects of the
active control system by introducing the discretized control system

actuator forces {N(#)},, giving

MY, + [CHisk + (K ude = INOR+ POR 5

k=1,2..K,

As was discussed in Chapter I, the actuator forces can be
described in terms of either output, state or modal feedback gains. In
this investigation, direct output feedback (Refs. 15-18) is used for the
following reasons: 1) it leads to a control system which is relatively
easy to implement, 2) a stable control system design based on an unc-
ertain plant model will not result in an unstable system when applied
to the real structure (i.e. the controller is robust, Refs. 6, 15, 18), 3)
both the controllability and observability of the system are independent
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of the feedback gains (Ref. 19) and 4) the robustness properties of the
controller are preserved in the face of certain unmodeled

sensor/actuator dynamics (Ref. 64).

The actuator forces can be written in terms of the system level

position and velocity feedback gain matrices [G,], and [G,]; as

{N(t)}k == [Gv]k{u}k - [Gp]k{u}k (3_14)

For the general case, the feedback gain matrices can be obtained

from the equations (Refs. 15, 18)

G =[b 1[H b
[ v]k [ a][ v]k[ V] (3-15)

and

[Gpli = [Bl[Hplidbp] (3-16)

where the jxm matrix [b,] relates the actuator outputs to the com-
ponents of {N(f)},. The mxn matrices [H,], and [Hp]k contain the
velocity and position feedback gains for the k-th dynamic load condi-
tion, and the nxj matrices [b,] and [b,] relate the components of {u},
and {u}, to the velocity and position measurements. The dimensional
quantities j, m, and n represent the number of degrees of freedom in
the structural model, the number of actuators and the number of sen-
sors, respectively. From the form of Egs. (3-15) and (3-16) it is clear
that the construction of system level feedback gain matrices depends
on the location and orientation of the actuators and sensors and on

how the sensor measurements are fed back to the actuators.
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As an alternative to the general representation of the feedback
gain matrices given by Egs. (3-15) and (3-16), it is also possible to

generate [G,], and [Gp]k via the concept of a control element. In this

approach, the system level feedback gain matrices are assembled from

element level gain matrices associated with control elements having
pre-defined numbers of actuator and sensors and known actuator/sensor
feedback schemes. One such element, which is similar in concept to a
member damper (Ref. 6), is the member controller. This element (see
Appendix B) can be thought of as a single force actuator connected
between two points on the structure with a position and velocity sensor
at each end of the actuator. These elements can be introduced into the
system model as required and then assembled into the system feedback
gain matrices in the same way that the structural elements are assem-
bled. In this work the control system representation implemented is

based exclusively on the use of axial force controller elements.

Given that the actuator forces have the form of Eq. (3-14), the

closed loop equations of motion (Eq. (3-13)) can be written as follows:
[M1{u}, + [Cali{ude + [Kgli{ude = {POY
(3-17)
k=1,2..K,

where the control augmented damping and stiffness matrices are given

by
Cu, = G
[Cali = [C] + [G )k (3-18)
and
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K], = G
(K4l = [K] + [ p]k (3-19)

For the case where the external dynamic loading is harmonic, that is

[P}, = {P}; (cost + i sinQyt) = {P},e™™

(3-20)
the steady state solution of Eq. (3-17) has the form
{u}, = {up}, + i{u}, = Qcple + i3 )™
k RIk I3k Rk 1He) G3.21)
Substituting Egs. (3-20) and (3-21) into Eq. (3-17) gives
(—QFM] + IQUC, + [KaloEcrde + ilc}e™ =
P} eiQ"t
Fhe (3-22)

Equation (3-22) can be modified to include structural damping as fol-

lows

| St
{Phe (3-23)

where 7y denotes the structural damping coefficient.

Eliminating &** from both sides and equating the real and imaginary

parts of Eq. (3-23) leads to the following matrix equations:

[Kui— QM) —Q[C4)K] {crte {Ph
QUCIHK]  [Kal—Q3M] {cih {0}
k=12,.K,
(3-24)

For the general case, Eq. (3-24) represents a 2n x 2n set of indefinite,
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non-symmetric linear simultaneous algebraic equations in the unk-
nowns {cg}, and {c;};, where n is the order of the system model.
These equations can be solved directly using any one of a number of
well known linear equation solvers, although numerical ill-conditioning
may occur near resonance if the system is not sufficiently damped. An
alternative to the direct solution of Eq. (3-24), which requires the solu-
tion of two n x n sets of linear algebraic equations, is described in
Appendix C. It should also be noted that the efficiency of the solution
process can be enhanced for the case where [K,], and [C,], are sym-

metric by rewriting Eq. (3-24) in the following symmetric form:

QUICALHK]  [K4)—QEM] {crh {0}

; k=1.2,..K,
[.KA]"—Q’%[M] —Q[CaliVK] {crhe {Ph
(3-25)
This will be the case when the active control system is modeled with

the member controller elements described previously.

Once Eq. (3-25) has been solved the steady state solution is
obtained by substituting {cg}, and {c;}; into Eq. (3-21). Substituting
the following well known identity

&M = cos€Qt + i sinQQ ¢
(3-26)
into Eq. (3-21) yields the steady state response in the alternate form
{u}, = {up}, + i{u
k= {upti 1} (3-27)

where
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ux}, = {cp};, cosQt — {c;}, sinQQ,t
{upti = {crli k e " (3-28)

and

= inQ.t + Qt
{u} = {cp}y sinQQyt + {c;}, cosCy (3-29)

The sine and cosine components of the dynamic displacements can be

combined for the j-th degree of freedom as follows:

uRjk = Iujk|Sin(th + “l’jk)

(3-30)
Uy, = |ulsin(Qt + d) (3-31)
where
|u]k| = ((“12{,} + C%,k) ’ (3-32)
tan Y, = —Cg,/cp, (3-33)
tan ¢jk = cl,-g/ CRy (3-34)

Having calculated the steady state dynamic displacements using
Egs. (3-27), (3-28) and (3-29) it is now possible to recover the
corresponding actuator forces. The velocity vector is obtained by

differentiating Eqs. (3-27), (3-28) and (3-29) with respect to t yielding

{u}, = {ugh + i{wh

(3-35)
{ughe = ~Q{cghe sinQyr — Qlcph cosCt = Qi {urh, (3-36)
and
il =0 0sQt — Q inQt = Q
L} = Q{cp e cosy Aot sinQut = Q{ughe (3-37)

For the general case, the steady state dynamic actuator forces are
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obtained by substituting Eqs. (3-27) - (3-29) and Egs. (3-35) - (3-37)

into the actuator force equation

{Fa}e = — [H)[b,J{u}, — [HLb}{ule (3-38)

For the member controller, the element level steady state actuator
forces are obtained for the ith actuator by substituting Egs. (3-27) -
(3-29) and Egs. (3-35) - (3-37) into Eq. B-4 giving

{FaYe = {Farta + {Fartia

(3-39)
Fupta = — {F}i sin Qe + {F} cosCQ;t
{Farti {F2 b it + {F 1} k (3-40)
and
FuYa =+ {F 1} sinQt + {F,}§ cosQ
{Far}ie {F1}i it + {Fati it (3-41)
where
F}a = QH 5 cya — (H)a{cr}s
{F 1Y = SulH i{ ek — (Hplid cr i (3-42)
and
{Fy¥e = — QuIH,J5ca}s — IH ) e/
2}k ([ H Tl cr i plidcrtic (3-43)

In Egs. (3-42) and (3-43) [Hp]fk and [H ] represent the position and
velocity feedback gain matrices for the i-th control element in the k-th
dynamic load condition. The vectors {cg}§ and {c/}§ are calculated

from {cg}, and {¢;}, via the transformations

{cr}ti = [Tl{cglu (3-44)

and
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{ci¥a = Mt (3-45)

where it is understood that the vectors {cg}; and {c;}; are subsets of

the vectors {cg}, and {c;}; associated with the i-th control element.

Like the dynamic displacements [see Eqs. (3-30) - (3-34)] the
sine and cosine terms of the actuator forces can be combined for each

force component giving

%, = |Fa,lsin(Qt + &)

(3-46)
and
4R, = 1Fa,|sin(Qr + vy) (3.47)
where
PR = 11"+ ()0 (3-48)
tan &xk = Fﬁu/Ffa (3-49)
tan vik = - iik/Fsik (3 50)

3.4 Eigenvalue Analysis

The discretized equations of motion governing the undamped

vibration of a linear structural system are given by

[M1{u} + [K){u} = {0}
(3-51)

where [M] is the system mass matrix (see Eq. 3-12), [K] is the struc-

tural stiffness matrix and where {u} and {u} are vectors of nodal

accelerations and displacements, respectively. It is well known (e.g.
Ref. 30) that the solution to Eq. (3-51) has the form
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= {0}
{u(} = {6} a5

where {¢} and o represent the spatial distribution and frequency of the
motion. Substituting Eq. (3-52) into Eq. (3-51) and simplifying yields
the structural dynamic eigenvalue problem given by the following

equation:

— 2
(KK0} = w? (M1{0} a5

Alternatively, Eq. (3-53) may be written to include all of the modeled

frequencies and mode shapes as follows:

_ 2
[K][¢] = [M][¢$][w”] (3-54)

where [0?] is the diagonal matrix of natural frequencies and where [¢]
contains the corresponding mode shapes. Various methods can be
employed to solve Eq. (3-54). In this work a subspace iteration tech-
nique is used to solve for a subset of the natural frequencies and mode

shapes (Refs. 65-66) of the undamped structural system.
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CHAPTER 1V
Approximate Problem Generation
4.1 Introduction

The key to a tractable control augmented structural synthesis for-
mulation lies in the replacement of the original implicit nonlinear
design problem with a sequence of explicit approximate problems of
reduced dimensionality. The generation of these approximate problems
is accomplished through the application of a variety of techniques
commonly referred to as approximation concepts (Refs. 59-61). Pri-

marily, these techniques serve to 1) reduce the numbers of design vari-

ables and constraints in the design problem and 2) reduce the required
number of detailed (exact) constraint and objective function evalua-
tions. There are various methods available for this purpose. Those
implemented here include design variable linking, temporary constraint
deletion and explicit first order constraint approximations. These tech-
niques form the foundation of the approximate problem generation pro-
cedure which consists of the following steps: 1) objective function
evaluation, 2) constraint evaluation, 3) temporary constraint deletion
and 4) objective function and constraint approximation. This procedure

is described in detail in the following sections.
4.2 Objective Function Evaluation

As was discussed in Chapter II three distinct choices of objec-
tive function are available. They are 1) system mass, 2) dynamic

response at selected degrees of freedom and 3) control effort. Each of
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these objective functions can be written as a function of the intermedi-
ate variables X which are chosen to be the reciprocal element proper-
ties (REP’s) (i.e. 1/A for truss elements; 1/A, 1/J, VI, and 1/1, for
frame elements; 1/h,, and 1/h,, for control elements; and 1/m for non-
structural mass elements). In the first case the objective function is

given by

MX) =3 pAL; +
X) Zl‘, pA ZI‘, my 4-1)

where p;, A; and L; are the mass density, area and length of the i-th

structural element and m; denotes the I-th lumped mass.

For the second case the objective function can be written as

Jo(X) = (X
R(X) % % ij lu_]k(X)l (4_2)

where |ujk(f)| is the magnitude of the j-th dynamic displacement in the
k-th dynamic load condition and Q is its associated weighting
coefficient. The weighting coefficients are chosen such that Q is
equal to zero for displacement quantities which are not to be included

in the objective function. Otherwise,

. = u;.l
Q]k ik ( 4_3)
where “;,1 is the allowable value associated with the dynamic displace-

ment constraint imposed on ujk(}?). Consequently, Eq. (4-2) can be

rewritten as
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— (X0
JR(X)-; Z uj_k_

jkeNy  Yap (4-4)

where N is the set of dynamic displacements included in Jp by the

nonzero Qj.

In the third case the objective function is given by

_ K4 _
Jc(X) = Ry |F 4, (X
)=z 2 fulia %) (4-5)

where |F A.*(X—)l is the magnitude of the i-th actuator force in the k-th

dynamic load condition, R, is its associated scaling factor, I~ denotes
the set of actuator forces included in J., and K, equals the number of
independent dynamic loading conditions. The R; coefficients are

given by

R. :F;'l
kT (4-6)

where F, is the allowable value of the i-th actuator force. Using Eq.

(4-6) the control effort objective function can be written as

P IF 0, ()
=z .-56 4-7)

4.3 Constraint Evaluation

The definitions of acceptable behavior are central to the control
augmented structural synthesis problem statement. These definitions
are included in the mathematical problem statement in the form of
behavior constraints. Five basic types of behavior constraints are

included here: 1) constraints on overall static structural stiffness (in the
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form of nodal displacement/rotation constraints), 2) constraints on local
element static strength (i.e. stress constraints) 3) constraints on steady
state dynamic nodal displacements and rotations, 4) constraints on
dynamic steady state actuator forces and 5) constraints on undamped

natural frequencies.

The following options to impose additional constraints are
included: 1) upper limits on response index J, and control effort index
Jc when mass minimization is the objective (see Egs. 2-5); 2) upper
limits on system mass M and control effort index J. when response
index minimization is the objective (see Egs. 2-6); and 3) upper limits
on system mass M and response index Jp when control effort index

minimization is the objective (see Egs. 2-7).

All of the constraints described above can be written as follows;

84=R;,-1<0 4-8)

where the response ratio R, is the ratio of some measure of the system
behavior to its associated allowable value. This ratio is constructed

such that it approaches unity as the behavior constraint becomes criti-

cal.

For each type of constraint the response ratio can be written in
terms of the primary structural response quantities, the element REP’s
(X), the design variables (Y) and the allowable values. For the static

displacement constraints R, is given by
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a, (4-9)
where uq(}—(—) is a single displacement quantity associated with the gq-th
displacement constraint and u, is its associated allowable value. Simi-
larly, for the static stress constraints R, is written as

0, (F(#@X),X).X.Y)

Og, (4-10)

R X.Y) =

where o, is a measure of the elemental stress state (which is depen-
dent on the element cross section type) associated with the g-th

strength constraint and 6, is the allowable value.

In the case of the dynamic displacement and actuator force con-
straints, writing the response ratios directly in terms of the system
response quantities would lead to a time dependent constraint formula-
tion (see Egs. (3-30) and (3-31)). However, since the steady state
dynamic response is harmonic in nature, this time dependent constraint
formulation can be replaced by a constraint on the magnitude of the
response (see Eq. (3-32)). This is equivalent to constraining the
response over the entire time interval of interest under the assumption
that the interval is greater than or equal to the natural period of the
response. Taking this approach the response ratios for a constraint on

a single dynamic displacement quantity is given by

~ luy X
Ry®) = —-

(4-11)

q9

where qu(f)l is the magnitude of the displacement quantity (see Eq.
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(3-32)) associated with the q-th dynamic displacement constraint and

Uy, is its allowable value. Similarly, the response ratio for a constraint

on a combination of dynamic displacements is

JY 4-12)

where Jg(X) is given by Eq. (4-2) (with the weighting coefficients O,
chosen so that only the displacements of interest are included in the

constraint) and where J¥ is the upper bound allowable value.

Making the same assumption with respect to the time period of
interest, the response ratio for a constraint on a single actuator force is

written as

R = JFATDD
~ - F, (4-13)

where |F Aq(LT(f),X_)I is the magnitude of the actuator force (see Eq. (3-
48) associated with the q-th constraint and F,, is its allowable value.
Likewise, the response ratio for the control effort constraint is given

by

—  JcX
R =
I J¢ (4-14)

where J(X) is given by Eq. (4-5) and JY is the allowable upper bound

value.

For the frequency constraints the response ratio is given by

either
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02 (4-15)

02 (4-16)

when o, is the upper bound allowable. In both instances mq(}?) is the

natural frequency associated with the q-th constraint.

Finally, the response ratio for the system mass constraint is
= - MX)
R,(X) = —>~
1 MY (4-17)
where M(X) is given by Eq. (4-1) and MY is its allowable upper bound

value.
4.4 Temporary Constraint Deletion

Proper design of a structural system usually requires the con-
sideration of a substantial number of possible failure modes since, in
general, the critical failure modes are not known at the outset of the
design process. As a result, the synthesis problem statement may con-
tain a large number of inequality constraints. In order to reduce the
number of constraints, and the associated computational burden, it is
possible to temporarily ignore certain constraints which are not
expected to currently participate in the design. In effect, this process
reduces the number of constraints by approximating the critical con-

straint set.
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The criteria by which particular constraints are judged to be par-
ticipating (active) or non-participating (passive) forms the basis of the
constraint deletion technique. Various criteria are conceivable, how-
ever a relatively simple but effective strategy consists of deleting all
constraints with response ratios (R,) less than a specified constraint
truncation parameter CTP. The value of CTP may, in general, be
chosen separately for each constraint type and may change during the
design process. In this work, a single value for CTP is used for all
behavior constraints. The value of CTP is either set equal to a user
prescribed value or it is calculated automatically such that: 1) con-
straints with R, 2.7 are always retained, 2) constraints with R, <3
are always deleted and 3) constraints with .3 < R, <.7 are retained or
deleted depending on the value of the response ratio cutoff parameter

R.. This criteria can be written as

CTP = min {max{Rc,S}, v/ }
(4-18)

where R, is the maximum response ratio rounded down to the nearest

tenth (e.g. if man R, = .65 then R, = .6). When CTP is prescribed by
q€

the user its value is held constant during the entire design process.

Otherwise, the value of CTP is updated for each approximate problem.
4.5 Objective Function and Constraint Approximations

A key element in the efficient solution of the structural synthesis
problem lies in the construction of accurate explicit objective and con-
straint function approximations. This is particularly true in the case of

the behavior constraint functions because, in general, exact evaluation
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of these constraints requires that the structural analysis problem be
solved. Various methods are available for the construction of these
approximations, with the most commonly used techniques requiring
only the first derivatives of the functions to be approximated (Refs. 60
and 67).

The most commonly used approximation consists of expanding

the function in a linear first order Taylor series of the form

D EED =T+ & I g
L ot Z Ty, s o (4-19)

where the expansion variables Y are chosen so that the resulting
approximation is of the highest possible quality. In many cases, how-
ever, no single set of expansion variables may be chosen such that all
function approximations are sufficiently robust . In this case it has
been suggested (Ref. 68) that a hybrid or mixed variable approxima-
tion might be a useful alternative. This approximation can be con-
structed by the comparison of Eq. (4-19) with a first order Taylor

series expansion of the form

ez oo B YY) (11
ADEFD =17+ £ 5y | ]

Y, Y (4-20)
or, equivalently,
o n B OfiT 1 1
= = (Y, - Y2 v " v
1) = f(Y) = f(To) + El oY, [ 0, [ Y, Y, ] ] (4-21)

Subtracting Eq. (4-19) from Eq. (4-21) gives
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o o~ B ATy | X —Yp,)?
) - () =- El A Y,

(4-22)

For the case where f(Y) represents an objective function to be minim-
ized or a constraint function of the form f{Y) < 0 Eq. (4-22) indicates

that f; is more conservative than f; when

1 9y

<0
Y, 0Y, (4-23)

or, if Y, represents some physical variable known to be positive in

sign, when

R¥o) _ 0
Y, (4-24)

Consequently, comparison of f: and ﬁ on a term by term basis leads to

the following first order mixed variable approximation:

7D 2D AT + % 90 p
M OF L Ty, b (4-25)
where
Y, =Y, if Ao >0
b~ "o, 37,
B, =
Y,
—-Y§ (Y - (I/Yy) if ’;(Y") <0 (4-26)
b

This mixed variable approximation (54(17)) is more conservative than
either the pure linear approximation (ﬂ()?), see Eq. (4-19)) or the pure
inverse approximation (ﬁ(f), see Eq. (4-20) or (4-21)). Numerical
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experience has shown this approximation to be quite robust, yielding
good results for a significant class of structural synthesis problems
(e.g. Refs. 61 and 69). In this work, the mixed variable approximation
defined by Eqgs. (4-25) and (4-26) will be used for both the objective

function and constraint approximations.

Clearly, from Eq. (4-25), construction of the objective function
and constraint approximations requires the calculation of the partial
derivatives of the function which is to be approximated. For the gen-
eral case these derivatives can be written as

R _ |, o & %
3, |, T X X o, |%T @-27)

Jjeds

where J, is the set of REP’s associated with the b-th design variable.
The derivative of f with respect to X; is given by either

aX; 0X; ,op, du, aX iel, BF E)X (4-28)

for the case where f is a function of the static response quantities,

Olus,) AIF 4

ax ax Z, a|u| X, & AF,) X, (4-29)

when f is a function of the dynamic response quantities or

A g O

dX; ey, 00 9X; (4-30)

when f is a function of the natural frequencies; where Nf, If, Jf and Mf

are the sets of displacement degrees of freedom, element end forces,
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actuator forces and frequencies associated with the function f.

The displacement derivatives required in Eqs. (4-28) and (4-29)
can be computed in several ways (Ref. 70). In this work the partial
inverse form of the pseudo-load method (Ref. 60) is employed. The
eigenvalue derivatives needed in Eq. (4-30) are obtained via implicit
differentiation of Eq. (3-53). Detailed formulations for the displace-
ment, force and eigenvalue sensitivities, as implemented here, are

given in Appendix D.
4.6 Move Limits

While the objective function and constraint approximations
described previously are constructed to be of high quality, these
approximations do not, in general, accurately represent the true func-
tions over the entire design space. To ensure that the approximations
are accurate enough during the solution of each approximate design
problem a move limit strategy is employed. Specifically, side con-
straints are placed on the design variables to temporarily restrict the
design space to a region over which the approximating functions are
believed to be robust. These stepwise upper and lower bounds are cal-
culated using the designer supplied move limit parameter d,, as fol-

lows:

YE = max[YLY, — d.Y,]
b m* b (4_31)

YV = min[YV.Y, + d,Y,]
b mh 4-32)

where Y, is the value of the b-th design variable at the beginning of
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each approximate problem step and where YV and Y are the original

side constraints on Y, (see Eq. (2-1)).
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CHAPTER V
Optimization
5.1 Introduction

By using the approximate problem generation techniques
described in Chapter IV it is possible to replace each of the implicit
nonlinear mathematical programming problems given by Eqgs. (2-5),
(2-6) and (2-7) with a sequence of explicit approximate problems, each
having the form

min J(T)
Y

s.t. -Zq(f’.) <0 ; g0

rt<v<y’
~ o~ (6-1)
where J and h, are hybrid approximations (see Eqs. (4-25) and (4-26))
of the objective function and constraints and where ¥V and ¥ are the
stepwise upper and lower bounds on the design variables. Each of
these approximate problems is an explicit, separable, convex inequality
constrained mathematical programming problem. The solution of these

problems is discussed in the following section.
5.2 Design Optimization

The solution to the approximate design problem posed in Eq.
(5-1) can be obtained either by solving the problem directly (i.e., solv-
ing the primal problem) or by constructing and solving the associated

dual problem. The primal problem can be solved via any one of a
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number of well known nonlinear inequality constrained minimization
(Ref. 71-72) techniques. In this work, a modified feasible directions
method (Ref. 73), as implemented in the CONMIN program (Ref.
74), is used.

The dual of Eq. (5-1) is given by

I
max ) (5-2)

The dual function I(A) is defined as

I(A) = min L(Y,A
\) ‘Yl;‘Y%( ) (5-3)

where the Lagrangian function is given by

LN =JDH+ 3 A&
Y,A) =J(Y) EQ q g (5.4

and where Yy is defined by

=
"‘gl

}
(5-5)
Solving Eq. (5-2) for the optimal dual variables A will yield the
optimal values for the primal variables Y if the dual maximization

problem has a unique solution (saddle point).

It is well known that if the primal problem (Eq. (5-1)) is convex
program (i.e., J(¥) and Zq(Y); ge O are convex functions and Y is con-
tained in a convex subset of E®) and has at least one strictly feasible
solution (i.e., there exists some Y ... Zq(f) <0, ge Q), then the dual
problem has a unique saddle point (Y", A"). If this saddle point can be
found then ¥ solves the primal problem (Ref. 75). Since the hybrid

approximations used in constructing Eq. (5-1) are convex (Ref. 69), it
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follows (under the assumption that a strictly feasible design exists) that
the solution to the approximate design problem can be obtained by

maximizing the dual function.

While the dual method described above is clearly applicable to
the solution of Eq. (5-1), the efficiency of such a solution scheme is an
important consideration. In general, maximization of the dual function
is complicated considerably by the imbedded Lagrangian minimization
problem represented by Eq. (5-3). However, if L(Y,X) is additively
separable then the solvability of Eq. (5-2) is enhanced by the fact that
the Lagrangian minimization can be performed as a sequence of
smaller minimization problems (Ref. 75). Furthermore, when this
separability is complete the minimization of L(Y,A) simply consists of
solving a sequence of single variable minimization problems (Refs.
76-77). Since the hybrid approximations used to construct the primal
design problem are additively separable into functions of a single vari-
able, an efficient explicit mixed variable dual method can be devised
(Ref. 69).

Introducing the hybrid expressions for J and ;{q ; qu (see

Eqgs. (4-25) and (4-26)) Eq. (5-1) can be rewritten as
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. mb 2 2
min Z mbe— Z T Y0b+J
Y m,,>0 m,,<0 b
qu A a
s.t Zcbqu ZT 0b+th0 ’ q=1,2, Q
Cop>0 Chg<t b
i<y, <V ; b=12..B
bSIps Ty (5-6)
where
m - _a..J—
b oY, (5-7)
1 dY, (5-8)
J =g -% mYo+ T myY,
my>0 my<0 (5-9)
h, =h,(Yp) =% cp Yo+ T Cbq Yo
T S0 T g (5-10)
The dual problem (Eq. (5-2)) may now be written as
max min L(Y,})
A20 Ye¥y (5-11)
where
I m .
L¥X) = 3 mY,— 3 V3 +J/+
my>0 my<0 Yb
sA| T ol-3 2B+
bglb ~ v, 1o
o a2 T e Y (51

Interchanging the order of the double summation in the fourth and fifth
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terms, Eq. (5-12) can be rewritten as

L(Y,X) = Z mbe - Z —_— Y%b +

c5<0 | qeQ
Letting

n =—mbY%b ; m<0

Cb = Z )\q qu s qu>0
qeQ

Db=—27\.cb Y(Z) , c,,<0
€0 q9 q9 b bq (5_14)

and substituting into Eq. (5-13) yields

LYA) =3 mY,+ 3% %+ 3 CpY, +

my>0 my<0 b qu>0
¥ Dy 3 AA + S
— + +
a0 Vo o (5-15)

Recognizing that the last two terms of Eq. (5-15) are constant with
respect to Y and that the remaining terms are additively separable, the
minimization of L(Y,A) can be performed via B single variable minimi-

zations, i.e.:
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min L(Y,A) = % [YL min " Lb(Yb,'X)]

YeYrp b=t | 6T, <Yp (5-16)
where
Db
mbe + Cbe + —Yb- , mb>0
_ D,
Lb(Yb’}“) =4 Cbe + T s mb=0
b
n D,
et 5 O (5-17)

The solution to the b-th single variable minimization, (temporarily

ignoring the side constraints on Y,), is given by

D ;. o m>0
my + Cb ’ b
D
le) =< F:' ’ mb=0
Db + nb
e 5 e (5-18)

Taking the side constraints into consideration, the solution to the b-th

single variable minimization becomes (for C,, D;, > 0)

o, if (Ph2< o2 < @Yy
Y,= {7 if o< (¥h? . for m,>0

YU if of > (YY)?
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Yo if (F52 << (T
Ye if 2 < (¥h)? ; for my=0

Y if 32 (YY)2

(B, if (Y52 < PBE< (YY)?

Y if P2 < (Yh)? : for m,<0

Y5 if BE = ()

o = —2b
2 Db + nb
Bb Cb
D,
b~ Cb

Note also the following special cases:

Y,=Y% if my>0 and D, =0
Y,=YY if my<0 and C,=0

Yi<Y, <YV if my=C,=D,=0

(5-19)

(5-20)

(5-21)

Finally, using Egs. (5-19) - (5-21), the dual problem may be written as

an explicit problem in terms of A, that is

max I(Y(A),N)
A20

(5-22)

The dual problem given by Eq. (5-22) represents the quasi-

unconstrained maximization of a concave function and, as such, is
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solvable by various mathematical programming methods. Gradient
based techniques are particularly attractive in this case since the first
derivative of the dual function is immediately available from the pri-

mal constraint values (Ref. 75), i.e.:

AN _ % . el

oA, ¢ 5 9€@ (5.:23)

However, if I(X) does not possess continuous first derivatives these
methods may exhibit slow or nonconvergent behavior. The dual func-
tion can be shown to be continuously first order differentiable under
the following conditions: 1) Y is contained in a closed and bounded
subset (S) of E", 2) J and Eq ; qu are continuous on S and 3) L(Y,})
is minimized over S at a unique point Y(A) for all A > 0. From Egs.
(5-18)-(5-21) it can be seen that these conditions are satisfied except
for the case when m,, C, and D, are all equal to zero. For the approx-
imate design problems given by Egs. (2-9) and (2-10) (i.e., the
response minimization and control force minimization problems) it can
be argued that the coefficients m, will always be nonzero. Therefore,
in these two cases a gradient based mathematical programming method
can be used to solve the dual problem. In this work the dual problem
is solved in the full dual variable space using the feasible directions
method discussed previously. The dimensionality of the dual space is
equal to the number of retained constraints. Therefore, solving the
dual is generally more efficient than solving the primal if the number
of retained constraints is less than the number of primal design vari-

ables.
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CHAPTER VI
Numerical Results
6.1 Introduction

The control augmented structural synthesis methodology
described in the preceding chapters has been implemented in a
research computer program which is operational on the IBM 3090
computer at UCLA. This program has been used to generate numeri-
cal results for various example problems. These problems were
selected so that, in addition to demonstrating the basic features of the
design methodology, the results could be critically evaluated through
insights into the physical behavior of the system.

6.2 Problem 1 - Cantilevered Beam, Mass Minimization

The first example problem is that of finding the minimum mass
design of the cantilevered beam shown in Fig. 3. The beam is
modeled with ten beam type finite elements (see Appendix A) each 1.0
m in length. The motion of the beam is constrained such that only
vertical displacements and in-plane rotations are allowed. A concen-
trated mass (200 kg) is located at the midspan node and a vertical har-
monic load (P,(f) = 4000 Nt sin (3.9 Hz)t) is applied at the tip. Two
percent structural damping (y = .02) is assumed. The design variables
for this problem are the web and flange thickness (¢,,2,) of the beam
elements and the position and velocity feedback gains (h,,h4,) of the

control elements.
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6.2.1 Case A - Uniform Structural Design

Two cases were studied for this problem. In the first case (Case
A) the web and flange thickness variables are linked along the entire
length of the beam. The initial values of these variables was taken to
be 5.0 cm with side constraints imposed so that .5 cm < ¢, , < 10.0

cm.

Three runs were made for Case A. In each run the magnitude
of the vertical dynamic tip displacement is constrained to be less than
10.0 cm and the first undamped natural frequency must be greater than
4.0 Hz. Stepwise move limits of 30% (d,, = .3) were imposed on the
design variables. In the first run (uncontrolled) there are no active
control devices in the system. For the second run actuator #1 is added
to the system and in final run actuators 1 and 2 are included. The ini-
tial values of the feedback gains are h, = 20.0 Nt/cm and A, = 5.0 Nt-
sec/cm. Lower bound side constraints on the feedback gains (h, 2 .05
Nt/cm, h, > .05 Nt-sec/cm) ensure that the final designs will be
dynamically stable (Ref. 18). The magnitude of each actuator force is
constrained to be less than 20% of the external loading (800 Nt) and
the total control force must be less than 35% of the loading (1400 Nt).

The iteration history data, final designs and final design response
ratios for all three runs of Case A are given in Tables 1-3. The itera-
tion history plots are shown in Fig. 4. In all three runs the tip dis-
placement constraint is critical for the final design. The outboard
actuator constraint is also critical for both of the controlled runs and

the total control force constraint is critical in the final run. It is
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interesting to note that when two actuators are included in the system
the outboard actuator is favored in the final design. This is not unex-
pected since, for this problem, the undamped natural frequencies are
all greater than the forcing function frequency and, therefore, the

dynamic response is dominated by first mode behavior.

For all three runs the structural designs are changed from an ini-
tial uniform thickness distribution to the intuitively satisfying final
designs in which the web thickness (z,) takes on its minimum gage
value. Also, the actuator position gains (h,) consistently dominate the
velocity gains (h,) for the final designs. This is primarily due to the
fact that the undamped natural frequencies are well above the forcing
function frequency resulting in the stiffness augmentation being rela-
tively more effective (as compared to the damping augmentation) in

reducing the steady state response.

Examination of the objective function values for the final
designs shows a large improvement over the initial infeasible designs
for all runs. Also, moderate (13-20%) improvements in the final

design mass are obtained as a result of the addition of active control.
6.2.2 Case B - Non-uniform Structural Design

The problem definition for Case B is identical to that of Case A
except that the thickness design variables are allowed to vary along the
length of the structure. The beam element thickness is linked pairwise
along the length of the beam resulting in ten independent structural

design variables.
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Again, three runs were made; uncontrolled, controlled with one
actuator and controlled with two actuators. Stepwise move limits of
30% were imposed on the design variables during the solution process.
The iteration history data, final designs and final design response ratios
are given in Tables 4-6. The iteration history plots are shown in Fig.
5. As in Case A, the tip displacement constraint is critical in the final
design for all three runs. The outboard actuator constraint is also criti-
cal in both of the controlled runs. The total control force constraint is
critical in the final run with the outboard actuator being favored over

the inboard actuator.

From Table 5 one can observe that, as in Case A, the web
thicknesses are at minimum gage in all final designs. However in this
case the flange thicknesses taper along the length of the structure from
a maximum value at the root to minimum gage at the tip. This tapered
design is to be expected when the response is dominated by first mode
behavior. Also note that the velocity gains are, once again, dominated

by the position gains.

Examination of the objective function values for the final
designs shows a large improvement over the initial infeasible designs
for all runs. Small (6-9%) improvements in the final design mass are
obtained as the actuators are added to the system. Finally, it should be
noted that the final design objective function value for the uncontrolled
run in this case is less than the two actuator run for Case A. This
observation underscores the importance of utilizing any available struc-

tural design freedom as a means of achieving overall design goals.
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6.3 Problem 2 - Cantilevered Beam, Response Minimization

In the second example the design goal is to minimize the
dynamic tip displacement of the cantilevered beam shown in Fig. 3.
The loading condition, design variables, initial design, behavior con-
straints, and side constraints are the same as those for Problem 1. In
addition an upper bound constraint of 1000 kg is imposed on the struc-

tural mass.
6.3.1 Case A - Uniform Structural Design

Again, two cases were studied for this problem. In the first case
the web and flange thicknesses are linked along the entire length of the
beam. Three runs were made for Case A with stepwise move limits of
40% imposed on the design variables. The iteration history data, final
designs and final design response ratios are given in Tables 7-9. The
iteration history plots are shown in Fig. 6. The structural mass con-
straint is critical for all final designs and the outboard actuator con-
straint is critical for both controlled runs. For the final run the total
control force constraint is also critical, with the outboard actuator
being favored over the inboard actuator due to its greater effectiveness

in controlling the tip response.

It is interesting to observe that the final structural designs are
virtually identical for all three runs. This is intuitively satisfying since
it is expected that the limited amount of structural material would exhi-
bit a unique optimal distribution. As in Problem 1, the contributions

to the actuator forces due to velocity feedback are small compared to
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that due to the position feedback. Again this is due to the relative
ineffectiveness of damping augmentation away from a resonance con-

dition.

Finally, examination of the final design objective function values
show a large improvement over the initial infeasible designs for all
runs. Also, significant improvements (18-29%) in the final design tip

displacement values are realized with the addition of active control.
6.3.2 Case B - Non-uniform Structural Design

Case B, for this problem, is identical to Case A except that the
thickness design variables are allowed to vary along the length of the

beam. The element thicknesses are linked pairwise along the length of
the beam resulting in ten independent structural design variables.
Three runs were made with stepwise move limits of 40% imposed on
the design variables. In this case each approximate problem was
solved in its dual form since the number of primal design variables is

significantly greater than the average number of retained constraints.

The iteration history data, final designs and final design response
ratios for all three runs are given in Tables 10-12. The iteration his-
tory plots are shown in Fig. 7. As in Case A, the structural mass con-
straint is critical in all three runs and the outboard actuator force con-
straint is critical for both controlled runs. The total control force con-

straint is also critical in the final run.
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All three final designs have virtually identical material distribu-
tions with the flange thicknesses at minimum gage and the web
thicknesses tapering from a maximum value at the root to minimum
gage at the tip. Again, the actuator forces are dominated by the contri-

bution due to the position gains.

The final design objective function values for all three runs are
greatly improved over the initial infeasible designs. Also, the final
design objective function value is significantly reduced (20-30%) with
the addition of the active control devices. Finally, it should be noted
that, as in Problem 1, the final objective function value for the uncon-

trolled run of Case B is less than the two actuator run of Case A.
6.4 Problem 3 - Cantilevered Beam, Control Force Minimization

In this example the design goal is to minimize the total control
force for the control augmented cantilevered beam shown in Fig. 3.
The loading condition, design variables, side constraints and frequency
constraint are the same as in Problem 1. The magnitudes of the actua-
tor forces are constrained to be less than 4000 Nt and the structural
mass must be less than 400 kg.

Two cases were considered for this problem. Three runs were
made for each case. In the first run only actuator #1 is included in the
system. Only actuator #2 is included in the second while in the final

run both actuators are included.
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6.4.1 Case A - Uniform Structural Design

In Case A the web and flange thicknesses are linked along the
length of the structure. The initial designs are given by t, =1,=2.5
cm, h,=20.0 Nt/cm and h, = 5.0 Nt-sec/cm. The magnitude of the
tip displacement is constrained to be less than 5.0 cm and 40% move

limits are imposed on the design variables.

The iteration history data, final designs and final design response
ratios are given in Tables 13-15. The iteration history plots are shown
in Fig. 8. The structural mass and tip displacement constraints are
critical for all three final designs. The actuator force constraint is
nearly critical in Run 2, indicating that the feasible region in this case

is relatively small.

Comparison of the final design objective function values under-
scores the importance of proper selection of the actuator location.
Clearly, when the actuator is placed at the inboard position (Run 2)
rather than at the tip (Run 1), the required control force is significantly
greater (38.1%). This is due to the fact that the first structural mode is
more readily controlled at the outboard position. In the final run,
where both actuators are included, the inboard actuator tends to "van-
ish" in favor of the outboard actuator yielding a final objective func-

tion value that is within 1.2% of that of Run 1.

Finally, it should be noted that the final structural designs are
nearly identical for all three runs. Again, as in Problem 2, this is an

indication of an essentially unique material distribution given a limited
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amount of material for the problem.
6.4.2 Case B - Non-uniform Structural Design

In Case B the web and flange thicknesses are linked pairwise
along the length of the beam. The initial designs for Runs 1 and 3 are
given by 7, =2.0 cm, ¢, =.75 cm, h, = 50.0 Nt/cm and A, = 5.0 Nt-
sec/cm. For the second run the initial design was ¢, = 2.0 cm, ¢, = .75
cm, h, = 100.0 Nt/cm and h, = 7.5 Nt-sec/cm. The magnitude of the
tip displacement is constrained to be less than 4.0 cm and 40% move

limits are imposed on the design variables.

The iteration history data, final designs and final design response
ratios are given in Tables 16-18. The iteration history plots are shown
in Fig. 9. The structural mass and tip displacement constraints are
critical for all three final designs. As in Case A positioning the actua-
tor at the outboard location results in significantly reduced control
effort (49.9%). Also, in the final run the inboard actuator tends to
"vanish", although in this case the objective function value is approxi-
mately 6.9% greater than that of Run 1. However, a subsequent run

with tighter convergence criterion resulted in a difference of less than
1.7%

6.5 Problem 4 - Cantilevered Beam, Multiple Loading Conditions

This problem is the same as Problem 1, Case B except that three
independent loading conditions are considered. The three loading con-
ditions are given by P;(#) = 4000 Nt sin (3.9 Hz)t, P(#) = 4000 Nt sin
(5.0 Hz)t and Py = 4000 Nt, M = 2.0 x 10° Nt-cm, respectively.
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Note that the third loading condition is a static loading condition (see
Fig. 3). In addition to the constraints imposed in Problem 1, the static
tip rotation is constrained to be less than .00796 rad and the lowest

undamped natural frequency must lie between 4.0 Hz and 4.9 Hz.

Three runs were made for this problem using stepwise move
limits of 30%. The iteration history data, final designs and final design
response ratios are given in Tables 19-21. The iteration history plots
are shown in Fig. 10. The dynamic tip displacement constraints (under
both loading conditions) and upper bound frequency constraints are
either critical or near critical for all three final designs. In addition,
the outboard actuator force constraint (under loading condition #1) is
critical in the second run and, in the final run, the static rotation con-
straint and both actuator force constraints (under loading condition #1)

are critical.

For this problem several interesting observations can be made
from the final design data. First, for the uncontrolled run the final
structural material distribution exhibits characteristics typical of a
vibration absorber. Specifically, while the flange thickness distribution
initially tapers from the root towards the tip it increases again for the
outboard elements (see Fig. 11). Also, the web thickness is
significantly greater than its lower bound value near the tip. Both of
these conditions combine to simulate a sprung non-structural mass near
the tip of the beam. This behavior is also seen, to a lesser degree, in
the final design for Run 2. The existence of the vibration absorber

characteristics in these designs results from the upper bound on the
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undamped natural frequency which prohibits the purely tapered designs

achieved in Problem 1.

It is also interesting to note that the contribution to the actuator
forces due to velocity feedback is more significant for this problem
than it was for Problem 1. This is due to the fact that the first natural
frequencies for the final structural designs are near the 5.0 Hz forcing
function frequency of load condition 2. As a result the effectiveness
of the damping augmentation in controlling the steady state response is

increased.

The addition of the inboard actuator in the third run resulted in
satisfaction of the dynamic displacement constraints without resorting
to the vibration absorber type of design. In this case the structural
stiffness was allowed to decrease enough to cause the static tip rotation

constraint to become critical.

Finally, examination of the final design objective function values
shows a significant decrease (16-49%) in the structural mass with the

introduction of active control.

6.6 Problem 5 - Cantilevered Beam, Lumped Mass Design Ele-

ments

The problem statement for this example is the same as that for
Problem 4 except that two lumped non-structural mass design variables
are included in addition to the structural and control variables con-
sidered previously. One lumped mass is located at each end of ele-

ment #10. The design goal is to minimize the total system mass
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(structural plus non-structural mass) subject to the same constraints

imposed in Problem 4.

Three runs were made; uncontrolled, controlled with one actua-
tor and controlled with two actuators. The initial values for the
lumped masses are given by m = 5.0 kg, lower bound side constraints
imposed such that m > .1 kg. Stepwise move limits of 30% were

imposed on the design variables.

The iteration history data, final designs and final design response
ratios are given in Tables 22-24. The iteration history plots are shown
in Fig. 12. The dynamic tip displacement constraints (under both load-
ing conditions) and upper bound frequency constraints are either criti-
cal or near critical for all three final designs. The outboard actuator
force constraint (under loading condition #1) is also critical in the
second run. The static rotation constraint and the force in actuator 1

(under loading conditions 1 and 2) are critical in the final run.

It is interesting to note that for Runs 1 and 2 the inclusion of the
lumped mass design variables resulted in overall mass reductions as
compared to Runs 1 and 2 for Problem 4. Specifically, in Run 1 the
addition of 9.37 kg of non-structural mass resulted in a reduction of
4.28 kg in total system mass. In Run 2 the system mass was reduced
by 9.10 kg when 6.73 kg of non-structural mass was added. This
should not be too surprising given the nature of the final designs.
Apparently, a more efficient vibration absorber design was realizable
with the addition of the lumped masses since the absorber stiffness and

mass are not completely coupled as before. The changes in the
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structural material distribution can be seen by comparing Fig. 13 with

Fig. 11.

In the ﬁnai run the addition of the lumped mass design variables
resulted in a final design objective function value which is slightly
greater than that obtained without the lumped masses. In this case the
final design is driven by the static tip rotation constraint and does not
exhibit the characteristics of a vibration absorber. Therefore, the
lumped masses would not be expected to improve the design. A sub-
sequent run with tighter convergence tolerance gave a final system
mass value which was very close to that obtained in Problem 4, Run

3.
6.7 Problem 6 - Cantilevered Beam, Independent Actuator Gains

Problem 6 is the same as Problem 4 except that in this case the
actuator gain design variables are determined independently for each
dynamic loading condition. It is assumed here that the service
environment under which the system must operate is either known or

can be detected and that the system experiences either dynamic loading
condition #1 or #2, but not both simultaneously. The structural fre-

quency and static displacement constraints are imposed regardless of
the dynamic loading. In this way the structure is designed for all
operating conditions simultaneously while the system as a whole is
optimally adaptable to the service environment by switching between

appropriate sets of optimal actuator gains.
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Two runs were made for this problem. In the first run only the
outboard actuator is included in the system. Both actuators are
included in the second run. Stepwise move limits of 30% are imposed
on the design variables for both cases. The iteration history data, final
designs and final design response ratios are given in Tables 25-27.
The iteration history plots are shown in Fig. 14. The dynamic tip dis-
placement constraint (under loading condition #1) and the upper bound
frequency constraint are critical for both runs. The outboard actuator
force constraint (under loading condition #1) is critical in Run 1 while
the static tip rotation constraint and both actuator force constraints

(under loading condition #1) are critical in the final run.

Several interesting observations can be made here. First, the
actuator gains corresponding to loading condition #2 do not change
from the initial design values. This is due to the fact that the tip dis-
placement constraint for loading condition #2 is so far from its upper
bound value that it is never retained in the approximate design prob-
lem. The absence of this constraint as a design driver suggests that
active control devices are not required when the system is subjected
only to loading condition #2. By removing the actuator from the sys-
tem for this loading condition and obtaining the same final structural
design the foregoing conjecture was verified. It was also observed that
the dynamic tip displacement was reduced indicating that the addition
of active control actually adversely affects the tip displacement for
loading condition #2. This can be attributed to the fact that the initial
actuator gains used in this example increase the effective stiffness of

the system, moving the design closer to resonance.
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The previous observations are consistent with the fact that the
final design mass for Run 1 is 16% less than that obtained when one
set of actuator gains are used for both dynamic loading conditions. By
allowing the actuator gains for the first loading condition to change
independently of those for the second loading condition the stiffness
augmentation is increased thereby pushing the closed loop frequencies
away from the forcing function frequency of loading condition #1
without adversely affecting the response associated with the second

loading condition.

Finally, it should be noted that allowing independent actuator
gains does not appreciably change the final design objective function
value for the second run. This is not unexpected since the structural
design tends to be driven by the static tip rotation constraint. How-
ever, even though the final structural design is not much different than
that obtained in Problem 4, Run 3 the control system design and active

constraint set differs significantly.
6.8 Problem 7 - Planar Truss, Control Force Minimization

The design goal in this example is to minimize the total control
force for the control augmented planar truss structure shown in Fig.
15. This structure has previously been used to study the interaction of
active and passive control techniques in Ref. 48. The system consists
of an assemblage of ten truss elements (see Appendix A) and four
active control elements. The motion of the structure is constrained so
that only horizontal and vertical displacements are allowed. The truss

6

members are made of aluminum with E = 10.0 x 10™ psi and p = .1
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lb/in3, and the actuators act in the y-direction only. In addition, a sin-

gle concentrated non-structural mass (1.29 lb-sec/in) is placed at each
of nodes 1-4 to represent the mass of the actuators and sensors. Two

percent structural damping is assumed.

Two loading conditions are considered for this problem. Load-
ing condition #1 consists of a two dynamics loads acting in the vertical
direction at nodes 3 and 4. The form of each load is given by P,(¢) =
500 Ib sin (3.0 Hz)t. The second loading condition consists of a static
load P, = 500 Ib acting in the negative y direction at node numbers 1-

4.

Three cases are considered for this problem. In the first case
(Case I) the structural design is fixed with the area of each truss given
by A = .1 in. The design variables are the position and velocity gains
for the four actuators. The initial values of the gains are given by 4, =
10.0 1b/in and A, = 10.0 Ib-sec/in. Side constraints limit the gains so
that h, 2 .05 Ib/in and &, > .05 Ib-sec/in. The magnitudes of the verti-
cal dynamic displacements are constrained to be less than .5 in and the

force output of each actuator is limited to 200.0 Ib.

In the second case (Case II) both the truss areas and actuator
gains are allowed to vary. The initial structural design is uniform with
A = 1.0 in and upper and lower bound side constraints of 1.0 in and
.01 in are imposed. The initial values and lower bounds for the posi-
tion and velocity gains are the same as in Case I. In addition to the
dynamic displacement and actuator force constraints described previ-

ously the following constraints are imposed for this case: 1) the
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structural mass must be less than or equal to that of the original struc-
ture (4.88 Ib), 2) the first mode frequency must be greater than the
forcing function frequency (3.0 Hz) but less than the first mode fre-
quency of the original structure (3.44 Hz) and 3) the axial stress in any
truss member must not exceed 20.0 ksi. Case III is identical to Case

IT except that the allowable stress is increased to 22.0 ksi.

The iteration history data and final designs for all three cases are
given in Tables 28 and 29. The iteration history plots are shown in
Fig. 16. The dynamic displacement constraints at nodes 2 and 4 are
critical in the final designs for all three cases. The upper bound fre-
quency and structural mass constraints are critical in Cases II and III.
In Case II the stress constraints for truss members 1,3,4,6,7, and 8 are

critical while members 1,3,7 and 8 are stress critical in Case IIL

The important observation here concerns how the structural
material distribution effects the control force required to meet the
dynamic displacement constraints imposed on the problem. It should
be noted that the structural mass and first mode undamped natural fre-
quency are the same in all three cases. However, as Table 29 shows,
the material distributions are significantly different. In Case II allow-
ing the structural design to change resulted in a 61.5% reduction in
total control force over Case I, even with the addition of the stress
constraints. An additional 13.4% reduction was obtained by relaxing
the stress constraint by 10%. Clearly, changes in the structural design
(in terms of both material distribution and selection) can significantly

effect active control system requirements.
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6.9 Problem 8 - Antenna, Response Minimization

In Problem 8 the antenna structure shown in Fig. 17 is to be
designed so that the magnitudes of the vertical dynamic displacements
are minimized. The structure consists of an assemblage of eight
aluminum beams (E = 7.3 x 106 Ntvem, p = 325, p = 2.77 x 10'3
kg/cm) each having a rectangular cross section (see Fig. 18). Two
percent structural damping is assumed. Actuators, located at the
corner nodes (2,4,5 and 7), act in the vertical direction. The structure
is subjected to two independent dynamic loading conditions. In each
loading condition a single harmonic force is applied to member #4 at a
distance of 10.0 cm from the centerline of the structure causing excita-
tion of both symmetric and anti-symmetric modes. The forces are
given by P(t) = 100 Nt sin (0)t, where ® = 5.0 Hz for the first loading
condition and ® = 10.0 Hz for the second loading condition. In addi-
tion to the dynamic loads the structure is also subjected to a uniformly
distributed static loading of 1.5 Nt/cm along the length of each beam

member, acting in the negative y direction.

Two cases were considered for this problem. In the first case
(uncontrolled) the actuators are removed from the system and the
thicknesses, widths and heights of the structural members are designed
to minimize the sum of the magnitudes of the vertical dynamic dis-
placements at nodes 2,4,5 and 7 (summed over the two dynamic load-
ing conditions). Linking is employed to force the final design to be
symmetric with respect to the x-y plane leaving 15 independent design

variables. The initial design is uniform (t = .5 cm, b = h = 20.0 cm)
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with side constraints imposed so that .1 cm < ¢< 1.0 cm and 10.0 cm
< b,h <25.0 cm. Move limits of 10% were imposed during the design
process. In addition to the side constraints the following behavior con-
straints are also included: 1) the fourth mode frequency must be
greater than or equal to 8.0 Hz, 2) the fifth mode frequency must be
greater than or equal to 9.25 Hz, 3) the Von-Mises static stress (as
evaluated at the points shown in Fig. 18) at both ends of each beam
member must not be greater than 2.0 x 104 Nt/cm2 and 4) the total

structural mass must be less than or equal to 700.0 kg.

The second case (controlled) is identical to the first except that
control elements at the corner nodes are included. In this case the
beam cross sectional dimensions (CSD’s) and the actuator position and
velocity gains are varied. As in Problem 6, the gains are determined
independently for each loading condition, so that there are a total of 31
design variables for the problem (15 CSD’s plus 16 gains). The initial
structural design, side constraints and move limits are the same as
those used for the controlled case. The initial actuator gains are given
by h, = 100.0 Nt/cm and A, = 10.0 Nt-sec/cm with side constraints
imposed so that &, 2 .05 Nt/cm and A, > .05 Nt-sec/cm. In addition to
the constraints imposed previously, each actuator force output is lim-

ited to a maximum of 15.0 Nt in this case.

The iteration history data and final structural designs for both
cases are given in Tables 30 and 31. The iteration history plots are
shown in Fig. 19. In both cases the critical constraints include 1) the

lower bound frequency constraints on the fourth and fifth modes, 2)
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the static stress constraint for member #1 (at the fixed end) and 3) the
structural mass constraint. The objective function value is significantly
improved over that of the initial infeasible design as a result of both
the addition and redistribution of structural material. The addition of
active control resulted in a further reduction of 40.9% as compared to

the uncontrolled case.

The complexity of the structure and the modes participating in
the response does not allow for a simple interpretation of the final
designs in this case. However, it is interesting to note that even
though the structural design is forced to be symmetric via linking, the
final actuator forces are not (see Table 32). This is to be expected
since, as mentioned previously, the point of application of the external
dynamic force causes both the symmetric and anti-symmetric modes to

be excited, leading to a non-symmetric response.
6.10 Problem 9 - Grillage

The final example problem involves the design of the 8 by 11
planar grillage shown in Fig. 20. The grillage, similar to the one
described in Ref. 78, consists of a lattice of 19 aluminum frame
members (p = .1 Ib/in, E = 10.5 x 106 psi, v = .3) placed on one foot
centers and cantilevered from two fixed supports by 20 inch long flexi-
ble beams. Each solid rectangular member is 2.0 in wide and has an
initial thickness of .25 in. The members are oriented so that the width
dimension lies in the plane of the structure. The grillage is augmented
with 24 active control elements, uniformly distributed over the grillage,

acting in the z direction. The mass of each actuator (1.296 x 10’3 1b-
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secz/in) is modeled as fixed non-structural mass. The grillage is sub-
jected to a dynamic loading (P(t) = 16.9 Ib sin(2.0 Hz)t) applied at

node 6 in the z direction. Two percent structural damping is assumed.

Two runs were made for this problem. In the first run (control
force minimization) the design goal is to minimize the total control
force subject to upper bound constraints of 1.0 in on the magnitudes of
the out-of-plane dynamic displacements at the four corners of the gril-
lage. The design variables are the control element position and velo-
city feedback gains which are initially set to #, = .1 Ib/in and &, = .25
Ib-sec/in for all actuators. Lower bounds are imposed on the gains so
that h, 2 .001 Ib/in and A, > .001 Ib-sec/in. The design variables
associated with each actuator are linked with those of the actuator
located at its symmetric (relative to the y-z plane) grid point (see Fig.
20) resulting in 24 independent design variables. Actuator force con-
straints are also employed to limit each actuator output to a maximum
of 2.0 Ib. Note that the structural design is fixed (w = 2.0 in, t = .25

in) for this run.

In the second run (weight minimization) the design goal is to
minimize the structural weight of the grillage. In this case both the
actuator gains and the structural member thicknesses are included as
design variables. The initial values and lower bounds for the gains are
the same as in Run 1. The member thicknesses are initially .25 in,
with side constraints imposed so that .1 in <t < .5 in. In addition to
the dynamic displacement and actuator force constraints, an upper

bound constraint is imposed on the total control force for this run.
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The upper bound value was chosen to be equal to the final design

value of the total control force for Run 1 (3.61 Ib).

Iteration history data as well as initial and final design actuator
forces for these runs are given in Tables 33 and 34. The iteration his-
tory plots are shown in Fig. 21. A significant reduction (60%) in the
total force was realized in Run 1 by redistributing the actuator forces

to more efficiently control the second and third structural modes.

For the second run, all of the structural members achieve the
lower bound thickness value (.1 in) except for members 2,8,11 and 17.
The final thickness values for these members are £, = 2993 in, g =
2284 in, and #;; = t;; = .3959 in. It should be noted that, although
symmetry of the actuator gains was enforced through design variable
linking, the expected structural symmetry in the final structural design
was obtained without without linking. Also, the thickness of the main
load carrying members (11 and 17) has increased by 58%. Finally, a
58.9% reduction in the structural weight was obtained with no increase

in the total control force over that of Run 1.
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CHAPTER VII

Conclusions and Recommendations

7.1 Conclusions

A synthesis methodology for the design of control augmented
structures modeled as assemblages of frame and/or truss elements has
been presented. The control system is modeled with specialized active
control elements designed to represent collocated actuator-sensor pairs
employing a direct output feedback scheme. It is assumed that the
behavior of both the structure and the active control system is linear.
Multiple static and steady state dynamic loading conditions are con-

sidered simultaneously.

The design problem is posed as a general nonlinear program-
ming problem in which the structural sizing variables, non-structural
lumped masses and control system feedback gains are treated simul-
taneously as design variables. The objective function can be chosen to
be either total system mass, total active control force or a measure of
the system dynamic response. Constraints on static displacements and
stresses, natural frequencies, dynamic displacements, actuator forces,
total control force, and total system mass are considered. Side con-
straints on the design variables are included to prevent the generation

of unrealizable structural designs and to maintain dynamic stability.

The general design problem is solved through the iterative con-

struction and solution of a sequence of explicit approximate problems.
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Each approximate problem is generated through the application of a
variety of approximation concepts and then solved using a feasible

directions algorithm.

The methodology summarized above has been implemented in a
research computer program and has been used to solve a number of
illustrative example problems. These problems serve to demonstrate
the viability of the proposed design technique. Near optimal designs
can typically be obtained within 10-15 design iterations. It is expected
that improvements in both the constraint and objective function

approximations would lead to even faster convergence.

In addition to validating the proposed design methodology, the
numerical examples presented in this work serve to underscore the
importance of integrating the structural and control system design
processes. Clearly, the extent to which the structural and/or control
system design can be improved by an integrated design process is
problem dependent. However, it is demonstrated here that the best
designs are consistently obtained when the structure and control system
are designed simultaneously. It has been shown that both structural
mass and system response can be effectively reduced through the addi-
tion of active control devices (see Problems 1,2,4,5,6 and 8). It was
also observed that even more significant reductions in active control
force can be realized through optimal structural modifications (see
Problems 3,7 and 9).
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Typically, the addition of active control was most effective when
the structural design freedom was limited, as was the case when struc-
tural design variable linking was employed (see Problems 1-3). The
control system tended to manifest itself as stiffness augmentation when
the structural frequencies were well separated from the forcing func-
tion frequencies while damping augmentation was more important near
resonance (see Problem 4). The proper selection of the number and
location of the actuators was, as expected, observed to be essential to

the control system’s effectiveness (see Problem 3).

It was observed that constraints on static response (displace-
ments and stress) can significantly affect both the control system and
the structural design by limiting the redistribution of material in the
structure (see Problem 4,7 and 8). Proper structural material selection
(e.g. modifying the allowable stress) can also lead to improved control

system designs (see Problem 7).

Finally, as was shown in Problems 6 and 8, by allowing the
actuator gains to be determined independently for each dynamic load-
ing condition, the system can be designed to be adaptable to changes
in its service environment. In this case, the structure is designed for
all loading conditions simultaneously while the control system can be
tuned to the service environment by switching between appropriate sets

of optimal actuator gains.
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7.2 Recommendations for Future Work

The synthesis methodology presented in this work can be used
to design a significant class of control augmented structural systems.
While this work represents an important step towards the practical
integration of the structural and control system design processes,
several areas of future investigation can be identified which will lead
to increases in efficiency of the design process and/or broaden its

applicability.

Within the context of the current capability several possibilities
exist for improving solution efficiency. Since the majority of the
expense for each design iteration lies in the solution of the governing
equations, reducing the number of design iterations will lead to
significant reductions in total solution time. The key to fewer design
iterations is the construction of more robust approximate problems.
One possible way to improve the accuracy of the approximate problem
is to replace the current constraint and objective function approxima-
tions with a scheme whereby only the implicit quantities appearing in
these functions are approximated, with the remaining explicit non-

linearity being retained in the approximate problem.

In addition to reducing the nuniber of analyses required in the
design process, efficiencies can be gained by reducing the expense of
each individual analysis. Two possible techniques for reducing the
analysis cost are 1) to devise a reduced order analysis method based
on pre and post multiplication of the steady state response equations

by a subset of the undamped normal modes of the structure and 2) to
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implement the solution scheme outlined in Appendix C for either the

full or reduced order system.

In order to extend the methodology to a broader class of prob-
lems it will be important to consider more general control system
models. Non-collocated actuator-sensor pair models could be imple-
mented directly into the current capability for the case where sym-
metric feedback was used. Non-symmetric feedback would destroy the
symmetry of the equations governing the steady state response and
thus would require the implementation of an appropriate equation
solver. The consideration of other forms of feedback (other than direct
output feedback) may require that an alternative method be used to
solve for the dynamic response. However, it should be emphasized
that any appropriate analysis method can be incorporated into the

design methodology.

Other areas of investigation which will be important for the
solution of practical problems include 1) investigating the feasibility of
directly constraining dynamic stability via constraints on the real parts
of the closed loop eigenvalues, 2) the implementation of dynamic
stress constraints and 3) the consideration of loading conditions com-

posed of forces having different forcing function frequencies.
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APPENDIX A

Stiffness Matrices, Mass Matrices and Load Vectors
for Structural Elements

A.1 Prismatic Frame Element

The space frame element, shown in Fig. Al, is a two node,
twelve degree of freedom element oriented with the longitudinal axis
in the local x coordinate direction and the cross section principal axes
in the local y and z coordinate directions. The element is assumed to

have linear axial and torsional displacement states given by

u(x) = [Nl(x),Nz(x)]{ u }

4y (A-1)
0,(x) = [N (x),N2(x)] } 6,

1 {ex,} (A-2)

and cubic bending displacement states of the form

v(x) = [N3(x),Ng(x);N5(x),Nex)] ( v

9,
& (A-3)

0.,

and
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w(x) = [N3(x),— N4(x),N5(x),~ Ns(x)] { wy
0
w2

)

N

Y2

(A-4)
where u, v and w are the displacements in the local x, y and z coordi-
nate directions, 6,, 8, and 6, are the rotations about the x,y and z axes

and where the displacement shape functions are given by

X
N =1-=
1(x) 2

Nyx) = %

Nyx) =1- 3(-—2‘—)2 + 2(%9 A-S)

Nyx) = L[(%) - 2(%)2 + (%)31
Ns(x) =3(—1’§)2—2(§)3

Ne(x) =L[ - (%)2 + (%)3]

The assumed displacement states (Egs. (A-1) - (A-4)) lead to the fol-

lowing strain-displacement relations

. . 0
Axial strain: 3;-;- = [B4] {ul}

u
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where

[By] =

[B2] =

B3] =

26,
Torsional strain: —— = [B,] {9, }
ox 1
O, (A-6)
C otv
ture: —_—=
urvature 2 Byl vy
9,1
V2
922
aZ
B
F*) = [B3l( wm
e)l
wa
eyz
11 ]
| L’ L
[ 6 2x 2 3x 6  2x 2 3x
_—'2'2'(1— L)’_L(Z— L)’_LZ(L —1)’—L(1_ L)] AT)

2x 2 3x 6 62x 2 3x
)20, )"F(T'l)’L“’T)]

__1_
L( L L

The total strain and kinetic energies for the frame element can now be

written as
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EL & 9% .1 0% El, r 0*w .1, 0*w
7 1 GaY Gatd 5 [V
= > aVKI{g} A5
and
___%L du 1, du pIpL d0, . 06,
r= 2 i{_at_}{a:}d" 2 l{ ot } ot bx t
PA T vy v, pAE dw.r dw
> !{—t} {5 1+ 5 ,{{at”at}“"
= = @M A9)
where
p - mass density
E - material modulus of elasticity
G - material shear modulus
A - cross sectional area
J - torsional constant
I, - cross sectional principal moment of
inertia about the y axis
I - cross sectional principal moment of
inertia about the z axis
I, - polar moment of inertia
and
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{q}T = {u; vi wy exl Oy‘ ezl Uy v Wa 612 eyz ezz}

Note that the rotational kinetic energy associated with the bending
rotations 6, and 6, is assumed to be negligible and is therefore not

included in the total kinetic energy.

Evaluation of the integrals of Egs. (A-8) and (A-9) yields the

following element stiffness and mass matrices:

(A 0 0 o 0 0 -A 0 0 0 0 o |
ta, o L2, %
L2 L L2 L

o, L, 8y
L? L L? L
GJ -GJ
— 0 0 0 O 0o —
5 £ 0 0
4] 0 0 0 6—Iy- 0 21 0
y L y
—61
[K]‘:% I, o _L_z 0 0 o 2,
A 0 0 0 0 0
S 121, . . -6,
_ 0o —
121, 61,
z 1
(7 A
E
ar, o
i 4],
(A-10)
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140 0 O 0 0 0 70 0 O 0 0 0 T
156 0 0 0 22L 0 54 O 0 0 -13L
156 0 -22L 0 0 O 54 0 13L O

1401, o o 0 o0 o 701,

A A
42 0 0 0 -13L 0 -3L% 0
pAL 412 0 13L 0 0 312
20 0 13 0 -3

140 0 0 0 0 O
Sym. 156 0 0 0 -22L

156 0 22L O

1401,
A

412 0

| 4LZ

(A-11)

Similarly, the external work expression for the space frame element

subject to uniformly distributed loads can be written as

w =:[ {ppyp manym,} {u(x),v(x),w(x),0,(), — %v(x), %(x)}T dx (A-12)
where p,, p, and p, are forces per unit length in the x, y and z direc-
tions and m,, m, m, are moments per unit length about the x, y and z
axes. Evaluation of Eq. (A-12) using Egs. ((A-1) - (A-5)) and assum-

ing p,, p,, p, as well as m,, m,, m,, are constants (uniformly distributed)
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leads to the following form for the work equivalent load vector

2 2
g | PE pL md _ pL” pb
Y=y "™ 3t T T T
2 2
pkopk ok omlopl L
2 2 2 2 12 12 (A-13)

A.2 Prismatic Truss Element

The space truss element, shown in Fig. A2, is a two node ele-
ment oriented with the longitudinal axis in the local x direction. The

element is assumed to have a linear displacement state of the form

u@x) =[1- =, 71 {ul }
“2 (A-14)
where u is the displacement in the x direction. This assumed displace-

ment state leads to the following strain-displacement relation

Oux) _ -1 1
ox '[L’L]{“‘}
o’ (A-15)

The strain and kinetic energies for the truss element can now be writ-

ten as
EA Y ou.r ou
_  EAt Ou.,0u
U == ([{ M ot
1
=={ MK {uup}"
2 Uy Uy u\up (A-16)
and
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= % (i tip}K1 oty tip}T

which leads to the following expression for the element stiffness

matrix in local coordinates

1 1) (A-17)

1 2] (A-18)

Similarly, the external work due to a uniformly distributed axial load

p, can be written as

L
W = [ p, u(x)dx = {P} {uu,}7
[7 * (A-19)
which leads to the following work equivalent load vector
piL T
{P¥=—1{1 1}
2 (A-20)

Rewriting (K] [M]® and {P}¢ in terms of the full twelve nodal degrees
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of freedom gives

I
~ |
o
(=]
<o
(=]
(=]
[
o

(X1

Sym. 0 0 0 0 O

(A-21)
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and

[M)°

"R

0 0 O
0
(= 2

]
[en]
o
(=]

2

0 0 1 0 O
0 0 0 0 O
0 0 0 0 O

0 0 0 0 O
0 0 0 0 O
0 0 0 O

2 0 O

Sym. 0 O
0

{100000100000}
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APPENDIX B

Position and Velocity Feedback Gain Matrices for

Member Controller Element

The member controller element shown in Fig. B1 represents a
force actuator connected between two nodes of the structural model.
The element is oriented with the longitudinal axis in the local x coor-
dinate direction. It is assumed that the actuator exerts a force propor-
tional to the relative nodal displacements and velocities. For the k-th

dynamic load condition, these forces can be written as

flg(t) = hpk(uz—ul)k + hv‘(d2—u.1) (B_l)

H,(0) = = £1,0) = by (=) + by (1—17)

(B-2)
where u and « are the nodal displacements and velocities in the local x

direction and where h, and h, are the relative position and velocity

feedback gains. Equations (B-1) and (B-2) can be combined in matrix

form as

F R I F RN N |
AW f, o B ) [ 1] ) (B-3)

or

{Fa}t = — [H,If {u}; — [H,]§ {ul}
ASk plk Wik kWsk (B-4)
where {F,}¢ is the member controller force vector and where the ele-

ment level feedback gain matrices are given by
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and

[HJk = hy, [
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APPENDIX C

Alternative Steady State Response Solution Scheme

Consider the 2n x 2n system of simultaneous linear algebraic

equations given by (see Eq. (3-25))

QIC,) + 1K1 [K-Q%M] | J{cg} | JIO}
[K,]-Q2M] —QIC4] - ¥K] {e} | {P} (C-1)
where the load condition subscripts k have been omitted for conveni-

ence. In a more compact notation Eq. (C-1) can be written as

[[A] [B] ] {{CR}}_ {{0}}
B] —a1]  fe {P} (C-2)

Equation (C-2) is equivalent to the following two equations:

[A{cp} + [Bl{c/} = {0}
CR Cr (C_3)

[Bl{cgr} — [AH{c;} = {P}
CR 1 (C-4)

As an alternative to solving Eq. (C-1) directly, these two equations can

be solved simultaneously.

One possible way of solving Egs. (C-3) and (C-4) is to first
solve Eq. (C-3) for {¢;}, giving

{c1} = = [D){cr}
I R (C-S)
where
[D] = [BI"![A]
(C-6)
can be obtained by solving
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[B][D] = [A]
(C-7)

Substituting Eq. (C-5) into Eq. (C-4) yields

([AI[D] + [BD){cg} = {P}
® (C-8)

Finally, Eq. (C-8) can be solved for {cz} with {c;} being subsequently
obtained from (see Eq. (C-3))

Bl{c,} = - [A] .
[Bl{c;} {cr} (C-9)

The approach outlined above is susceptible to numerical
difficulties near resonance as the matrix [B] becomes nearly singular.
As a means of avoiding this problem Eq. (C-3) can be solved first for

{cgr}, giving
{cr} = - [EXc}

(C-10)
where
[E] = [AT"'[B]
(C-11)
can be obtained by solving
[A][E] = [B]
(C-12)
Substituting Eq. (C-10) into Eq. (C-4)
([BILE] + [AD{c;} = - {P}
! (C-13)

Finally, Eq. (C-13) can be solved for {c;} with {cg} being obtained
from (see Eq. (C-3))

[Al{cg} = - [Bl{c}}
* “ (C-14)
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This later approach will be numerically stable as long as the
matrix [A] is non-singular. This can usually be ensured through the

use of a small, but reasonable, amount of structural damping.
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APPENDIX D

Derivatives of Structural Response Quantities with

Respect to Reciprocal Element Properties

D.1 Static Displacement Derivatives

For the linear static structural analysis problem, the displacement
derivatives are easily obtained through the implicit differentiation of
the governing equilibrium equations with respect to the reciprocals of
the element properties. In general, differentiation of Eq. (3-1) with

respect to the j-th reciprocal property of the i-th element (x;) yields

3 P
aa[f..] (ul + (K] 22 _ 9Pk k=12,.K,

i ox;j ox;; (D-1)

Under the assumption that the external loads are independent of x; (Le.

o{P
Phe _ 0) Eq. (D-1) becomes
axij
o{uly
Kl =— =V ; k=12,.K,
ax; ik (D-2)

where the pseudo load vector Vi is given by

7 olK]

k= {u}
T Ay (D-3)

The system stiffness matrix [K] can be written as

I
K] =Y (BT (7 K1E(T1)(B);
zb (D-4)

where [K]{ is the element stiffness matrix in local coordinates, [T]; is

the element coordinate transformation matrix, [B]; is the element local
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to global degree of freedom transformation matrix and I is the total
number of structural elements. Substituting Eq. (D-4) into Eq. (D-3)

gives
— J[K]¢
=[BT ——— [T1.{Bl:
Vi = —[BL: [T]; ox; [T)IB; {u} (D-5)

Finally, Eq. (D-5) may be rewritten as

7 1 TrrTir'1e

Vip = — Irr Ttk e T1IB]:

ijk ) ((BY; [TY; K IGITLIBY; {utp (D-6)
where it is recognized that

o[K];
a(1/x;) (D-7)

(K] =

is the unit element stiffness matrix formed by assigning the j-th section
property a value of unity while the remaining section properties are set

to zero.

Using the expression for the pseudo load vector given by Eq.
(D-6), Eq. (D-2) can be solved for the unknown displacement deriva-
tives via the same procedure used to solve the equilibrium equations
(Eq. (3-1)). Solving Eq. (D-2) directly yields the derivative values for
all of the displacement degrees of freedom. For the case where the
number of displacement degrees of freedom associated with the
retained constraint set is fewer than the number of pseudo load vectors
associated with Eq. (D-2) it is computationally more efficient to solve

Eq. (D-2) using a partial inverse technique represented by the equation
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o{upli —
= [ V‘..
ox;; R (D-8)

where {up}, represents the displacement degrees of freedom associated
with the retained constraint set. The partial inverse matrix [C] is con-
structed such that its n-th row contains the vector {c}! obtained from

the solution of the equation

[K){c}, = {e},
c e (D-9)

where {e}, is a unit vector corresponding to the n-th degree of freedom
associated with the retained constraint set. It should be noted that the
solution of either Eq. (D-2) or Eq. (D-9) requires only the back substi-
tution of the vectors V;; or {e}, if the decomposed stiffness matrix has

been saved from the previous structural analysis.
D.2 Static Element Force Derivatives

The static element force derivatives are obtained through the
implicit differentiation of the element force-displacement relations.

Rewriting Eq. (3-8) in the global coordinate system gives

FY}, = [K1§ {u}, + {FEF}

{F¥ {u} k (D-10)
where {F}%, [K1%, {u},, and {FEF}%, are the element force vector,
stiffness matrix, vector of nodal displacements and fixed end force
vector for the r-th element and k-th load set. Differentiation of Eq.

(D-10) with respect to x; gives
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- J[K)8 a{u},k o{FEF},

{u}y + [KE ; i=r
ox;j k ox;j ox;j
oHFY _ |
ax,-j B
o{uln
g ; -
[K] a%; itr (D-11)
d

where the displacement derivatives {al;}"‘ are calculated as described

.
previously. Under the assumption that the external loads are indepen-

dent of the element properties

J{FEF}}; _o

ox; (D-12)
and Eq. (D-11) becomes
K}¢ o{u}
; {ulHKE ——= ; i=r
Xij ox;j
H{F}
ax,-j B
a{“}rlz L.
L[KF,g oy i#r (D-13)

Rewriting [K]¢ as
(K1 = [TI7[K):IT),
(D-14)
and substituting into Eq. (D-13) yields
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o[K];
( (r? aK] [T1,{u} + [TV KT,
Xij
o{F}%, 4
ax,-j -
o{u},
MK, St
k axu

(D-15)

Introducing the unit element stiffness matrix (K17, Eq. (D-15) becomes

X2

i
o{F}5

ax ij

a{u}rk

’
axij

Lm,T [KELT),

[~ < (VK ETD, {u}, i + TKIAT,

i#r

(D-16)

Finally, writing the element force derivatives in the local coordinate

system gives

oAFYy o{F}
ax,-j - " axq
or
(- :127[1(],‘;,-[71,{14},#[@5[7],
ij
ofF}y
axij B
o{u},
[KI7LT], % s iR
\ 24

.
since, by orthogonality of [7],,

[TLITI = [T1,[T17! = [
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D.3 Dynamic Displacement Derivatives

The derivatives of the steady state dynamic displacements

corresponding to the k-th dynamic loading condition

(PO} = (P} €™
(D-20)

can be obtained through the implicit differentiation of Eq. (3-27) with
respect to x;, giving
of{ul,  o{ugh . Huk
= + i

ox;j T ox; ox;j (D-21)

where, assuming that Q, is independent of x;;,

ofuple _ o{crli cos Ot — o{crk in Qur
and
oHturke = ofcrl sin Q. + olerhe cos Q
ax,-j ax,-j K ax,] ¢ (D-23)

Similarly the derivatives of the magnitude of the r-th dynamic dis-
placement are obtained by differentiating Eq. (3-32) with respect to x;,
yielding

a‘urkl
ox;;

y

0
—_ —1/2 o
- (C%,* + c%,*) [CR,t axu + cl,g ax (D_24)

In both cases, the derivatives of ¢z and ¢; with respect to x; are
obtained via the implicit differentiation of Eq. (3-25). Writing Eq. (3-

25) in the following compact notation,
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[Ale  [Bl] | {crk {0}
[Bly AL} | {chk {Ph (D-25)

and differentiating with respect to x; yields

[ o1, a8, | £
ox; o, {crbe (Al [Blx ox;
+ < > =
d[B], —a[A]k {cih [B], -[Al, a{cl}k
ax,-j axi- ] axu J
{0}«
1 P [ (D-26)
ax,-j

Under the assumption that the external loading conditions are indepen-

dent of x; Eq. (D-26) can be written as

( a{CR}k ]
[Al, [B], ax,-,- ‘71.,1,
4 . —
[Bl, —[Al o{crh VR.-,-, (D-27)
[ 9%

where the pseudo load vectors V;, and Vi, are given by

= __ OlAl - d[B];

Iz = ox; CR}k ax; {crhe (D-28)
and

= d[B], d[Al,

=T o {crhe + a—xu' {cih (D-29)

Substituting for [A], and [B], (see Eq. (3-25)), Eqs. (D-28) and (D-29)
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become

_ d oK
vV, =- [Qk LCale +v Ik} ] {erbe — [ Rale _ o2 9M1 ] {erh

Ia k
aX‘J ax,] ax,] axq

(D-30)

and

_ 0[K 4] o[Cyl
VRa =~ { 22 -} M] {crle + [Qk 2X +y oIK] ]{Cl}k

k
ax ij ax ij ax if ax ij

(D-31)

As was the case for the static displacement constraints, the partial
derivatives of the global matrices [K], [Kli [Cale and [M] with respect
to x; can be formed via transformation of the element level unit
matrices (see Egs. (D-4) - (D-7)). Once obtained, these quantities can
be substituted into Eqgs. (D-30) and (D-31), yielding the values for the
pseudo load vectors. Having formed the pseudo load vectors, the par-
tial derivatives of {cg}, and {c;}, with respect to x; are obtained by
solving Eq. (D-27) either directly or via the partial inverse technique
described previously. Finally, the partial derivatives of either the
dynamic displacements or their magnitudes with respect to x; are given

by substituting these partial derivatives into either Eq. (D-22), and Eq.
(D-23), or Eq. (D-24).

D.4 Member Controller Force Derivatives

The membrane controller force derivatives are given by the
implicit differentiation of the actuator force-displacement relations.
Rewriting (Egs. (3-39) - (3-43) in the global coordinate system for the

r-th actuator gives

112



{Fase = {Fap¥se + i {Fps¥s

where
{Far}s = — {Fp )5 sinQyz + {F}§, cosQys
{Fartfe = + {F Y3 sinQuz + {F5}8 cosQy
and where

{F 1Y = Q [H )% e}l — [Hplg {cr}

{Fa}he = — Qe [H B {cp¥se = [Hp3 {3

(D-32)

(D-33)

(D-34)

(D-35)

(D-36)

Differentiating Eqs. (D-32) - (D-34) with respect to x; and assuming

Q is independent of x; yields

H{Fpls  o{F )i i H{F urthe

ax,-]- axq ax,~
I{F )8 9{F,}¥ o{F,}¢
{Far¥ __ {F}5 SinQur + {F 1} cosQys
ax,-j ax,-j ax,-,-
oHFats  of{F 1Y% . o{F,}%
ox; =+ o, sinCQt + o COSEQt
where
~H B e H 8 el - Q. (H I8 bt (H Lo} ) 5
of{F Y%
ox -

~[H 8 crd i — QUH Bl R s i 7
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(D-38)

(D-39)

i=r
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-[H ]Ek{cR},k [H] {CR}rk+ Qk([Hv] et [H))E {c,},k)

oF 1}
ox;

i

H,] gdcrtt UH Ay si=r (D-41)

and where the prime () denotes differentiation with respect to x; (i.e.

[H)8, = 3[H,}8/0x;). Rewriting [H,]% and [H,} as

[H,18, = [TV [H154T),
(D-42)

[H,38 = [TIF[H, 18T,
(D-43)

and pre-multiplying both sides of Egs. (D-33) and (D-34) by [T], leads
to the following expression for the actuator force derivatives in the

local coordinate system:

o{Fa}ik _ HFar}ok ey {F s}k

i
where
o{Fap}ix HF )5 . o{F}x
= - sinQz + cosfQt
ax,-j axu ax,«j (D_45)
o{F ;)¢ o{F}; o{F,}¢
{ Al}rk -4+ { l}rk Siant+ { 2}rk COSQkI
ax,-j axl-j axq (D_46)
and where
—[H TedendnH, 7 Lo Qu (H)8dcpYee + H,); LR}
o{Fylrx _
Bxij -

~[H ) e} QuH 5 crYe 5 i (D-47)
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~H e e H 5 Ry (HLlentfe + LAY 5 i=r

oAF 3ok
ax"j -
—[H )8 cr¥ae QuIH et 5 i =7 (D-48)
and
{en3te = M Aetn (D-49)
, d{c;},
{er}o = [T), axl,-,- - (D-50)
{CR}ik = [T]r{CR}rk (D-Sl)
a{cR} rk

(D-52)

{er}e = [T, 3,

Finally, the derivatives of the magnitudes of the actuator forces
are easily obtained by differentiating Eq. (3-48) with respect to x;,
yielding (for the r-th actuator)

olFy, [ oF§ oF3,
vk - (Fe")Z + (Fe )2]—1/2 F‘e'* rk + Fent P—l
ox;; ! 2t ! ox;; - 2 ox;; (D-53)
oFs oFf, .
where and are obtained from Egs. (D-47) and (D-48),
ax,-j ax,J
respectively.

D.5 Eigenvalue Derivatives

The derivatives of the structural eigenvalues are obtained by
implicitly differentiating Eq. (3-53) with respect to x;. Rewriting Eq.

(3-53) as
- o [M]1{¢} = {0
(K] {¢} = {0} (D-54)
and differentiating with respect to x;; gives
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JIK] o{o} _ dw? M) 20 010}
o, {6} + [K] = Sy o [M){¢} - @? - {6} - 0’ [M] = o = {0}
(D-55)
Pre-multiplying Eq. (D-55) by {¢}7 and simplifying yields
{¢}T[ IE aa“‘“] 0y - 2= " (o) MI0) +
X;; X X,
0| - a2 | AL - g0y
ox; (D-56)
By symmetry of [K] and [M]
{0} [[KJ - o [M]] = [[K] - wz[M]]{¢} = {0}
(D-57)

Using Eq. (D-57), Eq. (D-56) yields the following expression for the

eigenvalue derivative:

| 9Kl _ 2 o[M]
e {6} [ax,., 5 ]{¢}
ox;; {6} M1{¢} (D-58)

For the case where the eigenvectors are normalized with respect to the

mass matrix Eq. (D-58) simplifies to

90 _ oy | LKL 2 AU | )
X x; x; (D-59)

i
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Table 1. Iteration History Data for Problem 1, Case A
Cantilevered Beam, Mass Minimization

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators

0 1937.60 [241.4] 1937.60 [244.1] 1937.60 [99.6]

1 1560.58 [18.9] 1686.56 [13.3] 1788.09 [0.8]

2 1287.93 [0.0] 1300.05 [0.0] 1314.18 [0.0]

3 1024.38 [0.0] 986.48 [0.0] 964.97 [0.0]

4 821.50 [0.0] 766.04 [0.0] 733.67 [0.0]

5 682.32 [0.0] 617.74 [0.0] 582.34 [0.0]

6 588.90 [0.0] 522.04 [0.0] 485.25 [0.0]

7 545.57 [0.0] 477.55 [0.0] 440.14 [0.0]

8 545.57 [0.0] 470.96 [0.0] 434.40 [0.0]

9 545.57 [0.0] 470.65 [0.0] 434.11 [0.0]

10 470.49 [0.0] 434.03 [0.0]
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Table 2. Final Designs for Problem 1, Case A
Cantilevered Beam, Mass Minimization

Final Design (cm, Nt/cm, Nt-sec/cm)

Element  Element Design Uncontrolled Controlled Controlled

Type Numbers  Variables 1 actuator 2 actuators
1 2.0141 1.6663 1.4975
Frame 1-10
1, .5000 5000 .5000
h, 79.3672 79.6817
1
h, 4216 3588
Control
h, 82.6042
2
h, 4012

- denotes lower bound value
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Table 3. Final Design Response Ratios for Problem 1, Case A
Cantilevered Beam, Mass Minimization

Response Ratio (R,)’

Constraint Uncontrolled Controlled Controlled

1 actuator 2 actuators
Tip Displacement 98958 99783 .99665
Frequency .65137 .69271 72034
Actuator Force (1) .99829 .99871
Actuator Force (2) .74927
Total Control Force 57045 .99884

* Rq = 1.0 indicates that the constraint is critical
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Table 4. Iteration History Data for Problem 1, Case B
Cantilevered Beam, Mass Minimization

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators
0 1937.60 [241.4] 1937.60 [244.1] 1937.60 [96.8]

1

1435.58 [5.0]

1445.70 [2.0]

1451.64 [0.0]

2 1060.17 [0.0] 1055.86 [0.0] 1051.61 [0.0]
3 774.72 [0.0] 768.06 [0.0] 762.12 [0.0]
4 571.01 [0.0] 563.48 [0.0] 557.37 [0.0]
5 428.23 [0.0] 420.22 [0.0] 413.16 [0.0]
6 329.83 [0.0] 318.91 [0.0] 311.01 [0.0]
7 293.13 [0.0] 279.29 [0.0] 270.72 [0.0]
8 292.16 [0.0] 276.10 [0.0] 267.58 [0.0]
9 292.16 [0.0] 275.51 [0.0] 266.83 [0.0]
10 274.68 [0.0] 266.09 [0.0]
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Table 5. Final Designs for Problem 1, Case B
Cantilevered Beam, Mass Minimization

Final Design (cm, Nt/cm, Nt-sec/cm)

Element  Element Design Uncontrolled Controlled Controlled

Type Numbers Variables 1 actuator 2 actuators

1-2 1 1.6100 1.3974 1.2824
3-4 1, 1.0570 0.8998 8156
Frame 5-6 1, .5350 .5000° .5000°
7-8 1 .5000° .5000° .5000°
9-10 1 .5000° .5000° .5000°
1-10 t, .5000° .5000° .5000"
hp 74.3907 75.2934

1
h, 1.2213 1.0236

Control

h, 79.4161

2
h, 1.5079

- denotes lower bound value
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Table 6. Final Design Response Ratios for Problem 1, Case B

Cantilevered Beam, Mass Minimization

Response Ratio (R,)’

Constraint Uncontrolled Controlled Controlled

1 actuator 2 actuators
Tip Displacement 1.00006 99793 99725
Frequency 11758 .30830 41180
Actuator Force (1) 1.00023 .98929
Actuator Force (2) 75857
Total Control Force 57156 .99877

* R = 1.0 indicates that the constraint is critical
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Table 7. Iteration History Data for Problem 2, Case A
Cantilevered Beam, Response Minimization

Tip Displacement (cm) [Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators
0 24.14 [241.4] 15.73 [244.1] 12.86 [99.6]
1 10.29 [43.1] 8.19 [54.2] 8.78 [39.4]
2 8.05 [10.7] 7.06 [11.6] 7.45 [2.1]
3 6.51 [0.1] 5.89 [0.1] 5.57 [0.4]
4 5.55 [0.3] 5.06 [0.2] 4.83 [0.2]
5 5.30 [0.0] 4.82 [0.0] 4.60 [0.0]
6 5.30 [0.0] 4.53 [0.0] 4.20 [0.0]
7 5.30 [0.0] 4.35 [0.9] 3.81 [0.7]
8 4.33 [0.1] 3.78 [0.2]
9 4.31 [0.1] 3.76 [0.1]
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Table 8. Final Designs for Problem 2, Case A

Cantilevered Beam, Response Minimization

Final Design (cm, Nt/cm, Nt-sec/cm)

Element  Element Design Uncontrolled Controlled Controlled
Type Numbers  Variables 1 actuator 2 actuators
1, 4.1210 4.1208 4.1207
Frame 1-10
ty 5000 5000 .5000
h, 166.7668 195.1923
1
h, 3.3558 3.4610
Control
h, 190.9900
2
h 4.6705

- denotes lower bound value
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Table 9. Final Design Response Ratios for Problem 2, Case A
Cantilevered Beam, Response Minimization

Response Ratio (R,)"

Constraint Uncontrolled Controlled Controlled

1 actuator 2 actuators
Mass 1.00045 1.00041 1.00039
Frequency 61204 61204 61203
Actuator Force (1) 1.00089 99954
Actuator Force (2) 75220
Total Control Force 57194 1.00100

* Rq = 1.0 indicates that the constraint is critical
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Table 10. Iteration History Data for Problem 2, Case B
Cantilevered Beam, Response Minimization

Tip Displacement (cm) [Maximum Constraint Violation (%))

Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators
0 24.14 [241.4] 15.73 [244.1] 12.86 [99.6]

1 15.51 [55.1] 10.84 [40.9] 7.46 [26.2]

2 20.87 [208.7] 11.43 [27.1] 3.23 [0.0]

3 4.20 [0.0] 4.60 [0.0] 2.05 [0.2]

4 2.71 [0.0] 2.81 [0.0] 1.65 [0.0]

5 2.12 [0.0] 2.03 [0.0] 1.48 [0.0]

6 1.93 [0.3] 1.72 [0.7] 1.36 [3.1]

7 1.85 [0.2] 1.55 [0.2] 1.27 [6.6]

8 1.81 [0.2] 1.45 [0.3] 1.27 [0.8]

9 1.79 [0.0] 1.43 [0.7] 1.26 [0.6]

10 1.79 [0.0] 1.43 [0.7] 1.26 [0.9]
11 1.79 [0.0] 1.43 [0.2] 1.25 [0.2]
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Table 11. Final Designs for Problem 2, Case B
Cantilevered Beam, Response Minimization

Final Design (cm, Nt/cm, Nt-sec/cm)

Element  Element Design Uncontrolled Controlled Controlled

Type Numbers  Variables 1 actuator 2 actuators
1-2 1 8.2810 8.2805 8.2701
3-4 1, 6.2360 6.2388 6.2426
Frame 5-6 1 3.8119 3.8149 3.8490
7-8 1 1.7654 1.7634 1.7670
9-10 [ 5000 .5000° .5000
1-10 1, .5000 .5000° .5000
h, 554.9204 635.5459
1
h, 3.3034 3.0415
Control
h, 739.5169
2
h 4.1872

- denotes lower bound value
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Table 12. Final Design Response Ratios for Problem 2, Case B

Cantilevered Beam, Response Minimization

Response Ratio (R))"

Constraint Uncontrolled Controlled Controlled

1 actuator 2 actuators
Mass 1.00000 1.00014 1.00148
Frequency -2.46838 -2.46920 -2.46126
Actuator Force (1) 1.00191 1.00245
Actuator Force (2) .75143
Total Control Force 57252 1.00222

* Rq = 1.0 indicates that the constraint is critical
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Table 13. Iteration History Data for Problem 3, Case A
Cantilevered Beam, Control Force Minimization

Control Force (Nt) [Maximum Constraint Violaton (%)]

Analysis Actuator No. 1 Actuator No. 2 Combined
Number
0 1621.8 [261.3] 1326.9 [294.9] 2429.4 [259.5]
1 1790.3 [200.9] 1374.7 [217.7] 2816.0 [198.2]
2 2339.4 [70.7] 1945.1 [79.8] 3535.1 [47.8]
3 3178.6 [23.6] 2829.9 [50.6] 4168.7 [0.0]
4 3591.7 [0.0] 3731.6 [39.6] 3991.8 [0.0]
5 3379.6 [0.0] 4696.5 [17.4] 3844.3 [0.0]
6 3194.7 [0.0] 4174.6 [24.6] 3719.9 [0.0]
7 3055.5 [0.0] 4106.4 [12.1] 3518.1 [0.0]
8 3000.0 [0.0] 4213.1 [5.3] 3323.9 [0.0]
9 2879.6 [0.0] 3990.6 [0.1] 3191.5 [0.0]
10 2854.3 [0.0] 3955.0 [0.1] 3114.7 [0.0]
11 2835.7 [0.0] 3916.7 [0.1] 3000.6 [0.0]
12 2946.6 [0.0]
13 2920.3 [0.0]
14 2887.8 [0.0]
15 2871.1 [0.0]
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Table 14. Final Designs for Problem 3, Case A
Cantilevered Beam, Control Force Minimization

Final Design (cm, Nt/cm, Nt-sec/cm)
Element  Element Design Actuator #1 Actuator #2 Combined
Type Numbers  Variables
1 1.3391 1.3413 1.3400
Frame 1-10 -
t .5000° .5000 .5000
h, 559.8847 548.3611
1
h, 4.6400 3.5447
Control
hy, 1080.5325 30.8545
2
h, 10.6129 0.6400

- denotes lower bound value
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Table 15. Final Design Response Ratios for Problem 3, Case A
Cantilevered Beam, Control Force Minimization

Response Ratio (R,)

Constraint Actuator #1 Actuator #2 Combined
Mass 99957 1.00075 1.00009
Tip Displacement .99407 99170 .99060
Frequency 75210 75161 75188
Actuator Force (1) .70894 .68747
Actuator Force (2) 97918 .03187

* Rq = 1.0 indicates that the constraint is critical
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Table 16. Iteration History Data for Problem 3, Case B
Cantilevered Beam, Control Force Minimization

Control Force (Nt) [Maximum Constraint Violaton (%)]

Analysis
Number

Actuator No. 1

Actuator No. 2

Combined

0

1

10

11

12

1191.2 [225.0]
1269.4 [42.4]
1617.8 [8.2]
1343.8 [0.0]
1127.9 [0.0]
964.6 [0.0]
902.2 [0.0]
842.9 [0.0]
822.0 [0.1]
812.2 [0.1]
811.4 [0.1]

810.5 [0.1]

1378.0 [228.1]
1434.3 [47.1]

1805.5 [14.2]

1543.5 [0.0]
1409.1 [0.0]
1341.9 [0.0]
1251.4 [0.0]
1231.9 [0.0]
1218.4 [0.1]
1214.8 [0.1]

1214.8 [0.1]

1847.8 [202.7]

1841.1 [33.6]

1625.6 [5.4]
1318.3 [0.0]
1167.0 [0.0]
1074.7 [0.0]
997.4 [0.0]
'950.9 [0.0]
897.1 [0.0]
879.2 [0.1]
871.1 [0.0]
867.4 [0.1]

866.6 [0.1]
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Table 17. Final Designs for Problem 3, Case B
Cantilevered Beam, Control Force Minimization

Final Design (cm, Nt/cm, Nt-sec/cm)

Element  Element Design Actuator #1 Actuator #2 Combined
Type Numbers  Variables
1-2 1 2.7099 2.7013 2.6999
3-4 1, 1.9018 1.8976 1.9151
Frame 5-6 t 1.0813 1.1018 1.0857
7-8 t, .5000 .5000 .5000
9-10 1 5000 .5000° .5000
1-10 1, .5000 .5000 .5000
h, 196.9884 172.6867
1 h, 1.9062 1.5341
Control
hy, 452.6438 52.3790
? h 4.1980 1.2029

- denotes lower bound value
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Table 18. Final Design Response Ratios for Problem 3, Case B
Cantilevered Beam, Control Force Minimization

Response Ratio (R;)"

Constraint Actuator #1 Actuator #2 Combined
Mass .99932 1.00015 1.00016
Tip Displacement 1.00092 1.00100 1.00091
Frequency -.81666 -.81196 -.81387
Actuator Force (1) 20264 .17686
Actuator Force (2) 30370 .04000

*R, = 1.0 indicates that the constraint is critical
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Table 19. Iteration History Data for Problem 4

Cantilevered Beam, Multiple Loading Conditions

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators
0 1937.60 [241.4] 1937.60 [244.1] 1937.60 [199.6]
1 1435.58 [5.0] 1445.70 [2.0] 1450.12 [0.0]
2 1060.25 [0.0] 1056.75 [0.0] 1050.51 [0.0]
3 774.67 [0.0] 764.82 [0.0] 762.41 [0.0]
4 586.29 [0.0] 559.22 [0.0] 559.19 [0.0]
5 525.75 [0.0] 482.77 [1.2] 434.07 [0.0]
6 502.78 [0.0] 446.32 [0.0] 363.08 [0.0]
7 491.28 [0.0] 425.22 [0.7] 318.91 [0.3]
8 484.39 [0.0] 409.00 [0.0] 297.34 [0.0]
9 478.81 [0.0] 399.44 [0.3] 288.51 [0.0]
10 476.29 [0.0] 397.69 [0.1] 288.40 [0.3]
11 475.00 [0.0] 397.20 [0.0] 283.72 [0.0]
12 473.58 [0.0] 397.03 [0.0] 281.41 [0.0]
13 473.18 [0.1] 396.90 [0.0] 281.20 [0.0]
14 473.18 [0.1] 281.20 [0.0]
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Table 20. Final Designs for Problem 4
Cantilevered Beam, Multiple Loading Conditions

Final Design (cm, Nt/cm, Nt-sec/cm)

Element  Element Design Uncontrolled Controlled Controlled

Type Numbers  Variables 1 actuator 2 actuators
1-2 73 2.1628 1.9997 1.0930
3-4 t 1.6528 1.2940 .9583
Frame 5-6 t 1.3692 9611 7579
1-6 1, 5000 5000 .5000°
1, 1.0222 7462 6138
7-8
ty .6024 5308 5000
1 1.3199 1.0629 5251
9-10
1, 1.3012 1.0493 5000
hy, 20.7929 68.3930
1
h, 3.1488 1.6856
Control
h, 96.0628
2
h, 2.4295

- denotes lower bound value
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Table 21. Final Design Response Ratios for Problem 4
Cantilevered Beam, Multiple Loading Conditions

Response Ratio (R,)"

Constraint Loading Uncontrolled Controlled Controlled
Condition 1 actuator 2 actuators
1 1.00076 1.00010 .99867
Tip Displacement
2 98334 .99097 .99887
Tip Rotation 3 .60900 73928 1.00003
Frequency (u.b.) 94251 98495 99572
1 99901 .99739
Actuator Force (1)
2 25756 .85395
1 99934
Actuator Force (2)
2 88125

* Rq = 1.0 indicates that the constraint is critical
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Table 22. Iteration History Data for Problem 5

Cantilevered Beam, Lumped Mass Design Elements

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled Controlled
Number 1 actuator 2 actuators
0 1947.60 [335.8] 1947.60 [279.5] 1947.60 [219.1]
1 1445.78 [22.3] 1470.50 [16.0] 1477.12 [0.0]
2 1445.41 [3.3] 1091.00 {0.0] 1082.43 [0.0]
3 1070.74 [0.0] 784.28 [0.0] 776.74 [0.0]
4 786.11 [0.0] 579.72 [0.0] 573.58 [0.0]
5 592.42 [0.0] 462.35 [0.0] 447.21 [0.0]
6 523.86 [0.0] 421.49 [0.0] 378.56 [0.0]
7 500.25 [0.0] 402.11 [0.0] 337.62 [0.0]
8 488.48 [0.0] 391.04 [0.2] 317.22 [0.0]
9 479.45 [0.0] 388.08 [0.1] 301.70 [0.9]
10 474.24 [0.0] 387.80 [0.1] 290.24 [0.0]
11 472.14 [0.0] 387.80 [0.1] 285.13 [0.0]
12 471.40 [0.0] 284.81 [0.2]
13 470.87 [0.0] 283.76 [0.1]
14 470.32 [0.0] 283.55 [0.1]
15 469.74 [0.0] 283.37 [0.1]
16 469.41 [0.0]
17 468.90 [0.1]
18 468.90 [0.1]
19 468.90 [0.1}
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Table 23. Final Designs for Problem 5
Cantilevered Beam, Lumped Mass Design Elements

Final Design (cm, Nt/cm, Nt-sec/cm)

Element  Element Design Uncontrolled Controlled Controlled

Type Numbers  Variables 1 actuator 2 actuators
1-2 1 .2.1284 1.9958 1.1297
3-4 1, 1.7070 1.3627 9633
5-6 t 1.3557 8371 7831
Frame
7-8 1, 1.0189 .6469 5395
1-8 t, .5000 .5000 .5000
1 1.1861 9707 5000
9-10
t, 1.2065 .9586 .5000
h, 20.2639 68.7099
1
h, 3.1582 1.7001
Control
hy, 93.0644
2
h, 2.6498
1 m 4.3082 3.2333 1.7656
Mass
2 m 5.0644 3.4966 1.8026

- denotes lower bound value
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Table 24. Final Design Response Ratios for Problem 5

Cantilevered Beam, Lumped Mass Design Elements

Response Ratio (R,)"

Constraint Loading Uncontrolled Controlled Controlled
Condition 1 actuator 2 actuators
1 1.00070 1.00073 .99240
Tip Displacement
2 .99900 .99907 96440
Tip Rotation 3 .61209 77017 1.00081
Frequency (u.b) 94385 99922 .99872
1 1.00070 99677
Actuator Force (1)
2 25306 .99242
1 .82830
Actuator Force (2)
2 82127

* Rq = 1.0 indicates that the constraint is critical
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Table 25. Iteration History Data for Problem 6

Cantilevered Beam, Independent Actuator Gains

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Controlled Controlled
Number 1 actuator 2 actuators

0 1937.60 [244.1] 1937.60 [99.6]

1 1445.70 [2.0] 1450.12 [0.0]

2 1056.75 [0.0] 1050.51 [0.0]

3 764.82 [0.0] 762.41 [0.0]

4 559.22 [0.0] 559.19 [0.0]

5 435.14 [0.0] 434.07 [0.0]

6 372.52 [0.0] 362.88 [0.0]

7 343.94 [0.0] 318.18 [0.5]

8 334.23 [0.0] 296.23 [0.0]

9 333.89 [0.0] 286.76 [0.0]

10 333.78 [0.1] 281.17 [0.0]

11 333.77 [0.1] 281.11 [0.0]

12 280.89 [0.1]
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Table 26. Final Designs for Problem 6

Cantilevered Beam, Independent Actuator Gains

Final Design (cm, Nt/cm, Nt-sec/cm)

Element Element Design Controlled Controlled
Type Numbers Variables 1 actuator 2 actuators
1-2 1 1.4020 1.0626
3-4 1 1.1673 9112
5-6 1 .9463 .8546
Frame
7-8 1 .6508 .6126
1-8 t, .5000 .5000°
1 7572 .5000°
9-10
t, 7473 .5000°
hy, 77.3350 76.3698
h,, 7720 9318
1
hy, 20.0000* 20.0000*
| h,, 5.0000* 5.0000*
Control |
hy, 106.1478
h,, 1.5067
2
hy, 20.0000*
h 5.0000*

- indicates lower bound value
* indicates initial design value
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Table 27. Final Design Response Ratios for Problem 6

Cantilevered Beam, Independent Actuator Gains

Response Ratio (R,)"

Constraint Loading Controlled Controlled
Condition 1 actuator 2 actuators
1 1.00063 1.00075
Tip Displacement
2 75560 S4411
Tip Rotation 3 .84822 99961
Frequency (u.b) 99178 .98059
1 .99582 99712
Actuator Force (1)
2 .18890 .13603
1 99926
Actuator Force (2)
2 09930

* Rq = 1.0 indicates that the constraint is critical
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Table 28. Iteration History Data for Problem 7

Planar Truss, Control Force Minimization

Control Force (1bf) [Maximum Constraint Violation (%)]

Analysis Case I Case I1 Case III
Number

0 264.91 [16.6] 264.91 [46.1] 264.91 [32.81]
1 289.48 [0.0] 295.97 [8.1] 329.07 [8.9*]
2 273.87 [0.0] 251.30 [0.0] 241.06 [10.2%¥]
3 261.23 [0.0] 196.44 [0.0] 170.59 (0.0}
4 236.34 [0.0] 159.51 [0.0] 131.08 [0.0]
5 212.26 {0.0] 134.16 [0.0] 109.39 [0.0]
6 181.52 [0.0] 116.94 [0.0] 89.71 [0.0]
7 171.31 [0.0] 94.11 [0.0] 70.27 [0.0]
8 162.92 [0.0] 83.93 [0.0] 56.79 [0.0]
9 158.91 [0.0] 77.63 [0.0] 44.94 [0.0]
10 157.82 [0.0] 70.91 [0.0] 40.22 [0.0]
11 156.55 [0.0] 64.77 [0.0] 39.99 [0.0]
12 156.53 [0.0] 62.63 [0.4] 39.75 [0.0]
13 156.51 [0.0] 60.97 [0.2] 39.51 [0.0]
14 60.24 [0.]] 39.27 [0.0]
15 60.24 [0.1]

* indicates that the constraint was not included in the approximate

problem
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Table 29. Final Designs for Problem 7
Planar Truss, Control Force Minimization

Final Design (in2, Ibf/in, 1bf-sec/in)

Element  Element Design Case I Case I Case III
Type Numbers  Variables

1 A .1000 0418 .0384
2 A .1000 2612 .0358
3 A .1000 0418 .0380
4 A .1000 .1458 1512
Truss 5 A .1000 .0884 .0304
6 A .1000 .1464 .1525
7 A .1000 0474 .0430
8 A .1000 0474 .0435
9 A .1000 .1318 .1918
10 A .1000 .1307 .1908
hp 137.6488 58.2634 30.8160

1
h, 8188 4716 .8784
hp 170.0123 57.3637 31.1041

2
h, .9489 4677 .8793

Control

hp 3.2195 3.6974 5.0606

3
h, 1276 .1818 8134
hp 3.2190 3.6981 5.0605

4
h 1276 .1819 .8139
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Table 30. Iteration History Data for Problem 8
Antenna, Response Minimization

Displacement (cm)
[Maximum Constraint Violation (%)]

Analysis Uncontrolled Controlled
Number
0 2914 [224 4] 3461 [232.9]
1 3773 [27.6] 3204 [32.5]
2 .4055 [2.3] 2515 [4.3]
3 .3741 [0.0] .2297 [0.0]
4 .3382 [0.0] 2172 [0.0]
5 .3000 [0.0] .2027 [0.0]
6 .2667 [0.0] .1933 [0.0]
7 .2501 [0.0] .1863 [0.0]
8 .2501 [0.0] .1765 [0.0]
9 .2501 [0.0] .1649 [0.0]
10 .1552 [0.0]
11 .1478 [0.0]
12 .1478 [0.0]
13 .1478 [0.0]
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Table 31. Final Structural Designs for Problem 8
Antenna, Response Minimization

Final Design (cm)

Element Element Design Uncontrolled Controlled
Type Numbers Variables
b 25.0000" 25.0000"
1 h 18.5854 14.8938
t 7156 1.0000"
b 23.7507 25.0000"
2 h 21.5130 16.1376
t 5686 6678
b 25.0000™ 25.0000"
Frame 3,4 h 25.0000™ 25.0000™
t 7222 1.0000"
b 23.5134 20.7033
5,6 h 19.3385 15.1999
t 5687 3616
b 22.6945 21.5850
7-8 h 24.1004 25.0000"
t 5419 1.0000"

+ indicates an upper bound value.
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Table 32. Final Design Actuator Forces for Problem 8
Antenna, Response Minimization

Actuator Forces (Nt)

Actuator Location Load Condition #1 Load Condition #2
(Node Number)
2 9.4292 9.6983
4 9.9723 9.6279
5 6.0490 9.2117
7 4.7160 9.5934
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Table 33. Iteration History Data for Problem 9

Grillage
Objective Function (1b)
[Maximum Constraint Violation (%)]
Analysis Number Control Force Weight
0 9.00 [2.2] 94.20 [249.4]
1 18.53 [0.0] 89.82 [0.0]
2 11.73 [0.0] 85.43 [0.0]
3 7.29 [0.0] 77.42 [6.1]
4 6.70 [0.0] 67.94 [0.0]
5 5.94 [0.0] 61.76 [0.0]
6 5.32 [0.0] .59.00 [0.0]
7 4.66 [0.0] 58.02 [0.2]
8 4.50 [0.0] 58.04 [0.0]
9 3.68 [0.0] 57.55 [0.0]
10 3.65 [0.0] 57.07 [0.4]
11 3.61 [0.0] 56.85 [0.0]
12 56.72 [0.0]
13 56.14 [0.4]
14 55.57 [0.1]
15 55.49 [0.0]
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Table 34. Actuator Forces for Problem 9

Grillage
Actuator Forces (Ib)
Actuator Location Initial Control Force Weight
(Grid Number) Minimization Minimization

1,11 6396 0277 1339

3,9 1.0144 1116 .0872

5,7 1.0571 4320 .0397

23,33 3260 .0321 1297
25,31 S777 0242 0618
27,28 5754 .0207 .0730
45,55 9735 .4037 3301
47,53 1.0011 .0635 .0900
49,51 .8194 .0455 0754
67,77 9138 5201 5506
69,75 7511 0712 .0877
71,73 .6155 .0529 0759
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Fig. 2 Structural Element Orientation
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Fig. 17 Antenna, Problem 8
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Fig. A1 Space Frame Element
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